ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geoisumr Unicode version

Theorem geoisumr 11702
Description: The infinite sum of reciprocals  1  +  ( 1  /  A ) ^ 1  +  ( 1  /  A ) ^ 2... is  A  / 
( A  -  1 ). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisumr  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^
k )  =  ( A  /  ( A  -  1 ) ) )
Distinct variable group:    A, k

Proof of Theorem geoisumr
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9655 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9357 . 2  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  0  e.  ZZ )
3 simpr 110 . . 3  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
4 simpll 527 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  ->  A  e.  CC )
54abscld 11365 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( abs `  A
)  e.  RR )
6 0red 8046 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  e.  RR )
7 1red 8060 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
1  e.  RR )
8 0lt1 8172 . . . . . . . . 9  |-  0  <  1
98a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  <  1 )
10 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
1  <  ( abs `  A ) )
116, 7, 5, 9, 10lttrd 8171 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  <  ( abs `  A ) )
125, 11gt0ap0d 8675 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( abs `  A
) #  0 )
13 abs00ap 11246 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  A
) #  0  <->  A #  0
) )
1413ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( abs `  A
) #  0  <->  A #  0
) )
1512, 14mpbid 147 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  ->  A #  0 )
164, 15recclapd 8827 . . . 4  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( 1  /  A
)  e.  CC )
1716, 3expcld 10784 . . 3  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( 1  /  A ) ^ k
)  e.  CC )
18 oveq2 5933 . . . 4  |-  ( n  =  k  ->  (
( 1  /  A
) ^ n )  =  ( ( 1  /  A ) ^
k ) )
19 eqid 2196 . . . 4  |-  ( n  e.  NN0  |->  ( ( 1  /  A ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  A ) ^
n ) )
2018, 19fvmptg 5640 . . 3  |-  ( ( k  e.  NN0  /\  ( ( 1  /  A ) ^ k
)  e.  CC )  ->  ( ( n  e.  NN0  |->  ( ( 1  /  A ) ^ n ) ) `
 k )  =  ( ( 1  /  A ) ^ k
) )
213, 17, 20syl2anc 411 . 2  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( 1  /  A ) ^
n ) ) `  k )  =  ( ( 1  /  A
) ^ k ) )
22 simpl 109 . . 3  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  A  e.  CC )
23 simpr 110 . . 3  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  1  <  ( abs `  A
) )
2422, 23, 21georeclim 11697 . 2  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  /  A ) ^ n
) ) )  ~~>  ( A  /  ( A  - 
1 ) ) )
251, 2, 21, 17, 24isumclim 11605 1  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^
k )  =  ( A  /  ( A  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   CCcc 7896   0cc0 7898   1c1 7899    < clt 8080    - cmin 8216   # cap 8627    / cdiv 8718   NN0cn0 9268   ^cexp 10649   abscabs 11181   sum_csu 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator