ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geoisumr Unicode version

Theorem geoisumr 11445
Description: The infinite sum of reciprocals  1  +  ( 1  /  A ) ^ 1  +  ( 1  /  A ) ^ 2... is  A  / 
( A  -  1 ). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisumr  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^
k )  =  ( A  /  ( A  -  1 ) ) )
Distinct variable group:    A, k

Proof of Theorem geoisumr
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9491 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9194 . 2  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  0  e.  ZZ )
3 simpr 109 . . 3  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
4 simpll 519 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  ->  A  e.  CC )
54abscld 11109 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( abs `  A
)  e.  RR )
6 0red 7891 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  e.  RR )
7 1red 7905 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
1  e.  RR )
8 0lt1 8016 . . . . . . . . 9  |-  0  <  1
98a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  <  1 )
10 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
1  <  ( abs `  A ) )
116, 7, 5, 9, 10lttrd 8015 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  <  ( abs `  A ) )
125, 11gt0ap0d 8518 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( abs `  A
) #  0 )
13 abs00ap 10990 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  A
) #  0  <->  A #  0
) )
1413ad2antrr 480 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( abs `  A
) #  0  <->  A #  0
) )
1512, 14mpbid 146 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  ->  A #  0 )
164, 15recclapd 8668 . . . 4  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( 1  /  A
)  e.  CC )
1716, 3expcld 10577 . . 3  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( 1  /  A ) ^ k
)  e.  CC )
18 oveq2 5844 . . . 4  |-  ( n  =  k  ->  (
( 1  /  A
) ^ n )  =  ( ( 1  /  A ) ^
k ) )
19 eqid 2164 . . . 4  |-  ( n  e.  NN0  |->  ( ( 1  /  A ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  A ) ^
n ) )
2018, 19fvmptg 5556 . . 3  |-  ( ( k  e.  NN0  /\  ( ( 1  /  A ) ^ k
)  e.  CC )  ->  ( ( n  e.  NN0  |->  ( ( 1  /  A ) ^ n ) ) `
 k )  =  ( ( 1  /  A ) ^ k
) )
213, 17, 20syl2anc 409 . 2  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( 1  /  A ) ^
n ) ) `  k )  =  ( ( 1  /  A
) ^ k ) )
22 simpl 108 . . 3  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  A  e.  CC )
23 simpr 109 . . 3  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  1  <  ( abs `  A
) )
2422, 23, 21georeclim 11440 . 2  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  /  A ) ^ n
) ) )  ~~>  ( A  /  ( A  - 
1 ) ) )
251, 2, 21, 17, 24isumclim 11348 1  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^
k )  =  ( A  /  ( A  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   class class class wbr 3976    |-> cmpt 4037   ` cfv 5182  (class class class)co 5836   CCcc 7742   0cc0 7744   1c1 7745    < clt 7924    - cmin 8060   # cap 8470    / cdiv 8559   NN0cn0 9105   ^cexp 10444   abscabs 10925   sum_csu 11280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-frec 6350  df-1o 6375  df-oadd 6379  df-er 6492  df-en 6698  df-dom 6699  df-fin 6700  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-seqfrec 10371  df-exp 10445  df-ihash 10678  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-clim 11206  df-sumdc 11281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator