ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geoisumr Unicode version

Theorem geoisumr 11126
Description: The infinite sum of reciprocals  1  +  ( 1  /  A ) ^ 1  +  ( 1  /  A ) ^ 2... is  A  / 
( A  -  1 ). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisumr  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^
k )  =  ( A  /  ( A  -  1 ) ) )
Distinct variable group:    A, k

Proof of Theorem geoisumr
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9210 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 8918 . 2  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  0  e.  ZZ )
3 simpr 109 . . 3  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
4 simpll 499 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  ->  A  e.  CC )
54abscld 10793 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( abs `  A
)  e.  RR )
6 0red 7639 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  e.  RR )
7 1red 7653 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
1  e.  RR )
8 0lt1 7760 . . . . . . . . 9  |-  0  <  1
98a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  <  1 )
10 simplr 500 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
1  <  ( abs `  A ) )
116, 7, 5, 9, 10lttrd 7759 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  <  ( abs `  A ) )
125, 11gt0ap0d 8257 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( abs `  A
) #  0 )
13 abs00ap 10674 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  A
) #  0  <->  A #  0
) )
1413ad2antrr 475 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( abs `  A
) #  0  <->  A #  0
) )
1512, 14mpbid 146 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  ->  A #  0 )
164, 15recclapd 8402 . . . 4  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( 1  /  A
)  e.  CC )
1716, 3expcld 10265 . . 3  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( 1  /  A ) ^ k
)  e.  CC )
18 oveq2 5714 . . . 4  |-  ( n  =  k  ->  (
( 1  /  A
) ^ n )  =  ( ( 1  /  A ) ^
k ) )
19 eqid 2100 . . . 4  |-  ( n  e.  NN0  |->  ( ( 1  /  A ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  A ) ^
n ) )
2018, 19fvmptg 5429 . . 3  |-  ( ( k  e.  NN0  /\  ( ( 1  /  A ) ^ k
)  e.  CC )  ->  ( ( n  e.  NN0  |->  ( ( 1  /  A ) ^ n ) ) `
 k )  =  ( ( 1  /  A ) ^ k
) )
213, 17, 20syl2anc 406 . 2  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( 1  /  A ) ^
n ) ) `  k )  =  ( ( 1  /  A
) ^ k ) )
22 simpl 108 . . 3  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  A  e.  CC )
23 simpr 109 . . 3  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  1  <  ( abs `  A
) )
2422, 23, 21georeclim 11121 . 2  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  /  A ) ^ n
) ) )  ~~>  ( A  /  ( A  - 
1 ) ) )
251, 2, 21, 17, 24isumclim 11029 1  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^
k )  =  ( A  /  ( A  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448   class class class wbr 3875    |-> cmpt 3929   ` cfv 5059  (class class class)co 5706   CCcc 7498   0cc0 7500   1c1 7501    < clt 7672    - cmin 7804   # cap 8209    / cdiv 8293   NN0cn0 8829   ^cexp 10133   abscabs 10609   sum_csu 10961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-frec 6218  df-1o 6243  df-oadd 6247  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-seqfrec 10060  df-exp 10134  df-ihash 10363  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-clim 10887  df-sumdc 10962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator