| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isrhm | GIF version | ||
| Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| isrhm.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| isrhm.n | ⊢ 𝑁 = (mulGrp‘𝑆) |
| Ref | Expression |
|---|---|
| isrhm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrhm2 13786 | . . 3 ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | |
| 2 | 1 | elmpocl 6122 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring)) |
| 3 | ringgrp 13633 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 4 | ringgrp 13633 | . . . . . . 7 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
| 5 | ghmex 13461 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝑅 GrpHom 𝑆) ∈ V) | |
| 6 | 3, 4, 5 | syl2an 289 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 GrpHom 𝑆) ∈ V) |
| 7 | inex1g 4170 | . . . . . 6 ⊢ ((𝑅 GrpHom 𝑆) ∈ V → ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ∈ V) | |
| 8 | 6, 7 | syl 14 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ∈ V) |
| 9 | oveq12 5934 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 GrpHom 𝑠) = (𝑅 GrpHom 𝑆)) | |
| 10 | fveq2 5561 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 11 | fveq2 5561 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (mulGrp‘𝑠) = (mulGrp‘𝑆)) | |
| 12 | 10, 11 | oveqan12d 5944 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
| 13 | 9, 12 | ineq12d 3366 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 14 | 13, 1 | ovmpoga 6056 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ∧ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ∈ V) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 15 | 8, 14 | mpd3an3 1349 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 16 | 15 | eleq2d 2266 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ 𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
| 17 | elin 3347 | . . . 4 ⊢ (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | |
| 18 | isrhm.m | . . . . . . . 8 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 19 | isrhm.n | . . . . . . . 8 ⊢ 𝑁 = (mulGrp‘𝑆) | |
| 20 | 18, 19 | oveq12i 5937 | . . . . . . 7 ⊢ (𝑀 MndHom 𝑁) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) |
| 21 | 20 | eqcomi 2200 | . . . . . 6 ⊢ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) = (𝑀 MndHom 𝑁) |
| 22 | 21 | eleq2i 2263 | . . . . 5 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ 𝐹 ∈ (𝑀 MndHom 𝑁)) |
| 23 | 22 | anbi2i 457 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))) |
| 24 | 17, 23 | bitri 184 | . . 3 ⊢ (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))) |
| 25 | 16, 24 | bitrdi 196 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) |
| 26 | 2, 25 | biadanii 613 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ‘cfv 5259 (class class class)co 5925 MndHom cmhm 13159 Grpcgrp 13202 GrpHom cghm 13446 mulGrpcmgp 13552 Ringcrg 13628 RingHom crh 13782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-mhm 13161 df-grp 13205 df-ghm 13447 df-mgp 13553 df-ur 13592 df-ring 13630 df-rhm 13784 |
| This theorem is referenced by: rhmmhm 13791 rhmghm 13794 isrhm2d 13797 rhmf1o 13800 rhmco 13806 resrhm 13880 resrhm2b 13881 rhmpropd 13886 |
| Copyright terms: Public domain | W3C validator |