ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lswccatn0lsw Unicode version

Theorem lswccatn0lsw 11042
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccatn0lsw  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  (lastS `  B ) )

Proof of Theorem lswccatn0lsw
StepHypRef Expression
1 ccatlen 11026 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
21oveq1d 5949 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  ( A ++  B ) )  - 
1 )  =  ( ( ( `  A
)  +  ( `  B
) )  -  1 ) )
323adant3 1019 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( `  ( A ++  B
) )  -  1 )  =  ( ( ( `  A )  +  ( `  B )
)  -  1 ) )
4 lencl 10973 . . . . . . . . . 10  |-  ( A  e. Word  V  ->  ( `  A )  e.  NN0 )
54nn0zd 9475 . . . . . . . . 9  |-  ( A  e. Word  V  ->  ( `  A )  e.  ZZ )
6 lennncl 10989 . . . . . . . . 9  |-  ( ( B  e. Word  V  /\  B  =/=  (/) )  ->  ( `  B )  e.  NN )
7 simpl 109 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( `  A )  e.  ZZ )
8 zaddcllempos 9391 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
9 zre 9358 . . . . . . . . . . 11  |-  ( ( `  A )  e.  ZZ  ->  ( `  A )  e.  RR )
10 nnrp 9767 . . . . . . . . . . 11  |-  ( ( `  B )  e.  NN  ->  ( `  B )  e.  RR+ )
11 ltaddrp 9795 . . . . . . . . . . 11  |-  ( ( ( `  A )  e.  RR  /\  ( `  B
)  e.  RR+ )  ->  ( `  A )  <  ( ( `  A
)  +  ( `  B
) ) )
129, 10, 11syl2an 289 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( `  A )  <  ( ( `  A
)  +  ( `  B
) ) )
137, 8, 123jca 1179 . . . . . . . . 9  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( ( `  A
)  e.  ZZ  /\  ( ( `  A )  +  ( `  B )
)  e.  ZZ  /\  ( `  A )  < 
( ( `  A
)  +  ( `  B
) ) ) )
145, 6, 13syl2an 289 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  ( B  e. Word  V  /\  B  =/=  (/) ) )  -> 
( ( `  A
)  e.  ZZ  /\  ( ( `  A )  +  ( `  B )
)  e.  ZZ  /\  ( `  A )  < 
( ( `  A
)  +  ( `  B
) ) ) )
15143impb 1201 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( `  A )  e.  ZZ  /\  ( ( `  A )  +  ( `  B ) )  e.  ZZ  /\  ( `  A
)  <  ( ( `  A )  +  ( `  B ) ) ) )
16 fzolb 10258 . . . . . . 7  |-  ( ( `  A )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) )  <->  ( ( `  A )  e.  ZZ  /\  ( ( `  A
)  +  ( `  B
) )  e.  ZZ  /\  ( `  A )  <  ( ( `  A
)  +  ( `  B
) ) ) )
1715, 16sylibr 134 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( `  A )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) ) )
18 fzoend 10332 . . . . . 6  |-  ( ( `  A )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) )  ->  (
( ( `  A
)  +  ( `  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )
1917, 18syl 14 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( ( `  A
)  +  ( `  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )
203, 19eqeltrd 2281 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( `  ( A ++  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )
21 ccatval2 11029 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  (
( `  ( A ++  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )  ->  ( ( A ++  B ) `  (
( `  ( A ++  B
) )  -  1 ) )  =  ( B `  ( ( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) ) ) )
2220, 21syld3an3 1294 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( A ++  B ) `
 ( ( `  ( A ++  B ) )  - 
1 ) )  =  ( B `  (
( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) ) ) )
232oveq1d 5949 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( ( ( `  A )  +  ( `  B ) )  - 
1 )  -  ( `  A ) ) )
244nn0cnd 9332 . . . . . . 7  |-  ( A  e. Word  V  ->  ( `  A )  e.  CC )
25 lencl 10973 . . . . . . . 8  |-  ( B  e. Word  V  ->  ( `  B )  e.  NN0 )
2625nn0cnd 9332 . . . . . . 7  |-  ( B  e. Word  V  ->  ( `  B )  e.  CC )
27 addcl 8032 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( `  A
)  +  ( `  B
) )  e.  CC )
28 1cnd 8070 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  1  e.  CC )
29 simpl 109 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( `  A )  e.  CC )
3027, 28, 29sub32d 8397 . . . . . . . 8  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( ( `  A )  +  ( `  B )
)  -  1 )  -  ( `  A
) )  =  ( ( ( ( `  A
)  +  ( `  B
) )  -  ( `  A ) )  - 
1 ) )
31 pncan2 8261 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( `  A )  +  ( `  B ) )  -  ( `  A ) )  =  ( `  B
) )
3231oveq1d 5949 . . . . . . . 8  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( ( `  A )  +  ( `  B )
)  -  ( `  A
) )  -  1 )  =  ( ( `  B )  -  1 ) )
3330, 32eqtrd 2237 . . . . . . 7  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( ( `  A )  +  ( `  B )
)  -  1 )  -  ( `  A
) )  =  ( ( `  B )  -  1 ) )
3424, 26, 33syl2an 289 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( ( ( `  A )  +  ( `  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( `  B
)  -  1 ) )
3523, 34eqtrd 2237 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( `  B
)  -  1 ) )
36353adant3 1019 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( `  B
)  -  1 ) )
3736fveq2d 5574 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( B `  ( (
( `  ( A ++  B
) )  -  1 )  -  ( `  A
) ) )  =  ( B `  (
( `  B )  - 
1 ) ) )
3822, 37eqtrd 2237 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( A ++  B ) `
 ( ( `  ( A ++  B ) )  - 
1 ) )  =  ( B `  (
( `  B )  - 
1 ) ) )
39 ccatcl 11024 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
40393adant3 1019 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( A ++  B )  e. Word  V
)
41 lswwrd 11015 . . 3  |-  ( ( A ++  B )  e. Word  V  ->  (lastS `  ( A ++  B ) )  =  ( ( A ++  B
) `  ( ( `  ( A ++  B ) )  -  1 ) ) )
4240, 41syl 14 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  ( ( A ++  B ) `  ( ( `  ( A ++  B ) )  - 
1 ) ) )
43 lswwrd 11015 . . 3  |-  ( B  e. Word  V  ->  (lastS `  B )  =  ( B `  ( ( `  B )  -  1 ) ) )
44433ad2ant2 1021 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  B )  =  ( B `  ( ( `  B )  -  1 ) ) )
4538, 42, 443eqtr4d 2247 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  (lastS `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375   (/)c0 3459   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   CCcc 7905   RRcr 7906   1c1 7908    + caddc 7910    < clt 8089    - cmin 8225   NNcn 9018   ZZcz 9354   RR+crp 9757  ..^cfzo 10246  ♯chash 10901  Word cword 10969  lastSclsw 11013   ++ cconcat 11021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-rp 9758  df-fz 10113  df-fzo 10247  df-ihash 10902  df-word 10970  df-lsw 11014  df-concat 11022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator