ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lswccatn0lsw Unicode version

Theorem lswccatn0lsw 11141
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccatn0lsw  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  (lastS `  B ) )

Proof of Theorem lswccatn0lsw
StepHypRef Expression
1 ccatlen 11125 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
21oveq1d 6015 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  ( A ++  B ) )  - 
1 )  =  ( ( ( `  A
)  +  ( `  B
) )  -  1 ) )
323adant3 1041 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( `  ( A ++  B
) )  -  1 )  =  ( ( ( `  A )  +  ( `  B )
)  -  1 ) )
4 lencl 11070 . . . . . . . . . 10  |-  ( A  e. Word  V  ->  ( `  A )  e.  NN0 )
54nn0zd 9563 . . . . . . . . 9  |-  ( A  e. Word  V  ->  ( `  A )  e.  ZZ )
6 lennncl 11086 . . . . . . . . 9  |-  ( ( B  e. Word  V  /\  B  =/=  (/) )  ->  ( `  B )  e.  NN )
7 simpl 109 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( `  A )  e.  ZZ )
8 zaddcllempos 9479 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
9 zre 9446 . . . . . . . . . . 11  |-  ( ( `  A )  e.  ZZ  ->  ( `  A )  e.  RR )
10 nnrp 9855 . . . . . . . . . . 11  |-  ( ( `  B )  e.  NN  ->  ( `  B )  e.  RR+ )
11 ltaddrp 9883 . . . . . . . . . . 11  |-  ( ( ( `  A )  e.  RR  /\  ( `  B
)  e.  RR+ )  ->  ( `  A )  <  ( ( `  A
)  +  ( `  B
) ) )
129, 10, 11syl2an 289 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( `  A )  <  ( ( `  A
)  +  ( `  B
) ) )
137, 8, 123jca 1201 . . . . . . . . 9  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( ( `  A
)  e.  ZZ  /\  ( ( `  A )  +  ( `  B )
)  e.  ZZ  /\  ( `  A )  < 
( ( `  A
)  +  ( `  B
) ) ) )
145, 6, 13syl2an 289 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  ( B  e. Word  V  /\  B  =/=  (/) ) )  -> 
( ( `  A
)  e.  ZZ  /\  ( ( `  A )  +  ( `  B )
)  e.  ZZ  /\  ( `  A )  < 
( ( `  A
)  +  ( `  B
) ) ) )
15143impb 1223 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( `  A )  e.  ZZ  /\  ( ( `  A )  +  ( `  B ) )  e.  ZZ  /\  ( `  A
)  <  ( ( `  A )  +  ( `  B ) ) ) )
16 fzolb 10346 . . . . . . 7  |-  ( ( `  A )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) )  <->  ( ( `  A )  e.  ZZ  /\  ( ( `  A
)  +  ( `  B
) )  e.  ZZ  /\  ( `  A )  <  ( ( `  A
)  +  ( `  B
) ) ) )
1715, 16sylibr 134 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( `  A )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) ) )
18 fzoend 10423 . . . . . 6  |-  ( ( `  A )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) )  ->  (
( ( `  A
)  +  ( `  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )
1917, 18syl 14 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( ( `  A
)  +  ( `  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )
203, 19eqeltrd 2306 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( `  ( A ++  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )
21 ccatval2 11128 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  (
( `  ( A ++  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )  ->  ( ( A ++  B ) `  (
( `  ( A ++  B
) )  -  1 ) )  =  ( B `  ( ( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) ) ) )
2220, 21syld3an3 1316 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( A ++  B ) `
 ( ( `  ( A ++  B ) )  - 
1 ) )  =  ( B `  (
( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) ) ) )
232oveq1d 6015 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( ( ( `  A )  +  ( `  B ) )  - 
1 )  -  ( `  A ) ) )
244nn0cnd 9420 . . . . . . 7  |-  ( A  e. Word  V  ->  ( `  A )  e.  CC )
25 lencl 11070 . . . . . . . 8  |-  ( B  e. Word  V  ->  ( `  B )  e.  NN0 )
2625nn0cnd 9420 . . . . . . 7  |-  ( B  e. Word  V  ->  ( `  B )  e.  CC )
27 addcl 8120 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( `  A
)  +  ( `  B
) )  e.  CC )
28 1cnd 8158 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  1  e.  CC )
29 simpl 109 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( `  A )  e.  CC )
3027, 28, 29sub32d 8485 . . . . . . . 8  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( ( `  A )  +  ( `  B )
)  -  1 )  -  ( `  A
) )  =  ( ( ( ( `  A
)  +  ( `  B
) )  -  ( `  A ) )  - 
1 ) )
31 pncan2 8349 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( `  A )  +  ( `  B ) )  -  ( `  A ) )  =  ( `  B
) )
3231oveq1d 6015 . . . . . . . 8  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( ( `  A )  +  ( `  B )
)  -  ( `  A
) )  -  1 )  =  ( ( `  B )  -  1 ) )
3330, 32eqtrd 2262 . . . . . . 7  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( ( `  A )  +  ( `  B )
)  -  1 )  -  ( `  A
) )  =  ( ( `  B )  -  1 ) )
3424, 26, 33syl2an 289 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( ( ( `  A )  +  ( `  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( `  B
)  -  1 ) )
3523, 34eqtrd 2262 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( `  B
)  -  1 ) )
36353adant3 1041 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( `  B
)  -  1 ) )
3736fveq2d 5630 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( B `  ( (
( `  ( A ++  B
) )  -  1 )  -  ( `  A
) ) )  =  ( B `  (
( `  B )  - 
1 ) ) )
3822, 37eqtrd 2262 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( A ++  B ) `
 ( ( `  ( A ++  B ) )  - 
1 ) )  =  ( B `  (
( `  B )  - 
1 ) ) )
39 ccatcl 11123 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
40393adant3 1041 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( A ++  B )  e. Word  V
)
41 lswwrd 11113 . . 3  |-  ( ( A ++  B )  e. Word  V  ->  (lastS `  ( A ++  B ) )  =  ( ( A ++  B
) `  ( ( `  ( A ++  B ) )  -  1 ) ) )
4240, 41syl 14 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  ( ( A ++  B ) `  ( ( `  ( A ++  B ) )  - 
1 ) ) )
43 lswwrd 11113 . . 3  |-  ( B  e. Word  V  ->  (lastS `  B )  =  ( B `  ( ( `  B )  -  1 ) ) )
44433ad2ant2 1043 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  B )  =  ( B `  ( ( `  B )  -  1 ) ) )
4538, 42, 443eqtr4d 2272 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  (lastS `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   (/)c0 3491   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994   1c1 7996    + caddc 7998    < clt 8177    - cmin 8313   NNcn 9106   ZZcz 9442   RR+crp 9845  ..^cfzo 10334  ♯chash 10992  Word cword 11066  lastSclsw 11111   ++ cconcat 11120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-lsw 11112  df-concat 11121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator