ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lswccatn0lsw Unicode version

Theorem lswccatn0lsw 11090
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccatn0lsw  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  (lastS `  B ) )

Proof of Theorem lswccatn0lsw
StepHypRef Expression
1 ccatlen 11074 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
21oveq1d 5972 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  ( A ++  B ) )  - 
1 )  =  ( ( ( `  A
)  +  ( `  B
) )  -  1 ) )
323adant3 1020 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( `  ( A ++  B
) )  -  1 )  =  ( ( ( `  A )  +  ( `  B )
)  -  1 ) )
4 lencl 11020 . . . . . . . . . 10  |-  ( A  e. Word  V  ->  ( `  A )  e.  NN0 )
54nn0zd 9513 . . . . . . . . 9  |-  ( A  e. Word  V  ->  ( `  A )  e.  ZZ )
6 lennncl 11036 . . . . . . . . 9  |-  ( ( B  e. Word  V  /\  B  =/=  (/) )  ->  ( `  B )  e.  NN )
7 simpl 109 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( `  A )  e.  ZZ )
8 zaddcllempos 9429 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
9 zre 9396 . . . . . . . . . . 11  |-  ( ( `  A )  e.  ZZ  ->  ( `  A )  e.  RR )
10 nnrp 9805 . . . . . . . . . . 11  |-  ( ( `  B )  e.  NN  ->  ( `  B )  e.  RR+ )
11 ltaddrp 9833 . . . . . . . . . . 11  |-  ( ( ( `  A )  e.  RR  /\  ( `  B
)  e.  RR+ )  ->  ( `  A )  <  ( ( `  A
)  +  ( `  B
) ) )
129, 10, 11syl2an 289 . . . . . . . . . 10  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( `  A )  <  ( ( `  A
)  +  ( `  B
) ) )
137, 8, 123jca 1180 . . . . . . . . 9  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  NN )  ->  ( ( `  A
)  e.  ZZ  /\  ( ( `  A )  +  ( `  B )
)  e.  ZZ  /\  ( `  A )  < 
( ( `  A
)  +  ( `  B
) ) ) )
145, 6, 13syl2an 289 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  ( B  e. Word  V  /\  B  =/=  (/) ) )  -> 
( ( `  A
)  e.  ZZ  /\  ( ( `  A )  +  ( `  B )
)  e.  ZZ  /\  ( `  A )  < 
( ( `  A
)  +  ( `  B
) ) ) )
15143impb 1202 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( `  A )  e.  ZZ  /\  ( ( `  A )  +  ( `  B ) )  e.  ZZ  /\  ( `  A
)  <  ( ( `  A )  +  ( `  B ) ) ) )
16 fzolb 10296 . . . . . . 7  |-  ( ( `  A )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) )  <->  ( ( `  A )  e.  ZZ  /\  ( ( `  A
)  +  ( `  B
) )  e.  ZZ  /\  ( `  A )  <  ( ( `  A
)  +  ( `  B
) ) ) )
1715, 16sylibr 134 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( `  A )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) ) )
18 fzoend 10373 . . . . . 6  |-  ( ( `  A )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) )  ->  (
( ( `  A
)  +  ( `  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )
1917, 18syl 14 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( ( `  A
)  +  ( `  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )
203, 19eqeltrd 2283 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( `  ( A ++  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )
21 ccatval2 11077 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  (
( `  ( A ++  B
) )  -  1 )  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) ) )  ->  ( ( A ++  B ) `  (
( `  ( A ++  B
) )  -  1 ) )  =  ( B `  ( ( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) ) ) )
2220, 21syld3an3 1295 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( A ++  B ) `
 ( ( `  ( A ++  B ) )  - 
1 ) )  =  ( B `  (
( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) ) ) )
232oveq1d 5972 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( ( ( `  A )  +  ( `  B ) )  - 
1 )  -  ( `  A ) ) )
244nn0cnd 9370 . . . . . . 7  |-  ( A  e. Word  V  ->  ( `  A )  e.  CC )
25 lencl 11020 . . . . . . . 8  |-  ( B  e. Word  V  ->  ( `  B )  e.  NN0 )
2625nn0cnd 9370 . . . . . . 7  |-  ( B  e. Word  V  ->  ( `  B )  e.  CC )
27 addcl 8070 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( `  A
)  +  ( `  B
) )  e.  CC )
28 1cnd 8108 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  1  e.  CC )
29 simpl 109 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( `  A )  e.  CC )
3027, 28, 29sub32d 8435 . . . . . . . 8  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( ( `  A )  +  ( `  B )
)  -  1 )  -  ( `  A
) )  =  ( ( ( ( `  A
)  +  ( `  B
) )  -  ( `  A ) )  - 
1 ) )
31 pncan2 8299 . . . . . . . . 9  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( `  A )  +  ( `  B ) )  -  ( `  A ) )  =  ( `  B
) )
3231oveq1d 5972 . . . . . . . 8  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( ( `  A )  +  ( `  B )
)  -  ( `  A
) )  -  1 )  =  ( ( `  B )  -  1 ) )
3330, 32eqtrd 2239 . . . . . . 7  |-  ( ( ( `  A )  e.  CC  /\  ( `  B
)  e.  CC )  ->  ( ( ( ( `  A )  +  ( `  B )
)  -  1 )  -  ( `  A
) )  =  ( ( `  B )  -  1 ) )
3424, 26, 33syl2an 289 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( ( ( `  A )  +  ( `  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( `  B
)  -  1 ) )
3523, 34eqtrd 2239 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( `  B
)  -  1 ) )
36353adant3 1020 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( ( `  ( A ++  B ) )  - 
1 )  -  ( `  A ) )  =  ( ( `  B
)  -  1 ) )
3736fveq2d 5593 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( B `  ( (
( `  ( A ++  B
) )  -  1 )  -  ( `  A
) ) )  =  ( B `  (
( `  B )  - 
1 ) ) )
3822, 37eqtrd 2239 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (
( A ++  B ) `
 ( ( `  ( A ++  B ) )  - 
1 ) )  =  ( B `  (
( `  B )  - 
1 ) ) )
39 ccatcl 11072 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
40393adant3 1020 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( A ++  B )  e. Word  V
)
41 lswwrd 11062 . . 3  |-  ( ( A ++  B )  e. Word  V  ->  (lastS `  ( A ++  B ) )  =  ( ( A ++  B
) `  ( ( `  ( A ++  B ) )  -  1 ) ) )
4240, 41syl 14 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  ( ( A ++  B ) `  ( ( `  ( A ++  B ) )  - 
1 ) ) )
43 lswwrd 11062 . . 3  |-  ( B  e. Word  V  ->  (lastS `  B )  =  ( B `  ( ( `  B )  -  1 ) ) )
44433ad2ant2 1022 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  B )  =  ( B `  ( ( `  B )  -  1 ) ) )
4538, 42, 443eqtr4d 2249 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  (lastS `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   (/)c0 3464   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   CCcc 7943   RRcr 7944   1c1 7946    + caddc 7948    < clt 8127    - cmin 8263   NNcn 9056   ZZcz 9392   RR+crp 9795  ..^cfzo 10284  ♯chash 10942  Word cword 11016  lastSclsw 11060   ++ cconcat 11069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-fz 10151  df-fzo 10285  df-ihash 10943  df-word 11017  df-lsw 11061  df-concat 11070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator