ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lswccatn0lsw GIF version

Theorem lswccatn0lsw 11090
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccatn0lsw ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))

Proof of Theorem lswccatn0lsw
StepHypRef Expression
1 ccatlen 11074 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
21oveq1d 5972 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
323adant3 1020 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
4 lencl 11020 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
54nn0zd 9513 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
6 lennncl 11036 . . . . . . . . 9 ((𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
7 simpl 109 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
8 zaddcllempos 9429 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
9 zre 9396 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ)
10 nnrp 9805 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ+)
11 ltaddrp 9833 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ+) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
129, 10, 11syl2an 289 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
137, 8, 123jca 1180 . . . . . . . . 9 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
145, 6, 13syl2an 289 . . . . . . . 8 ((𝐴 ∈ Word 𝑉 ∧ (𝐵 ∈ Word 𝑉𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
15143impb 1202 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
16 fzolb 10296 . . . . . . 7 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
1715, 16sylibr 134 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
18 fzoend 10373 . . . . . 6 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
1917, 18syl 14 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
203, 19eqeltrd 2283 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
21 ccatval2 11077 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
2220, 21syld3an3 1295 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
232oveq1d 5972 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)))
244nn0cnd 9370 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
25 lencl 11020 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
2625nn0cnd 9370 . . . . . . 7 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℂ)
27 addcl 8070 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℂ)
28 1cnd 8108 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → 1 ∈ ℂ)
29 simpl 109 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (♯‘𝐴) ∈ ℂ)
3027, 28, 29sub32d 8435 . . . . . . . 8 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1))
31 pncan2 8299 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) = (♯‘𝐵))
3231oveq1d 5972 . . . . . . . 8 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1) = ((♯‘𝐵) − 1))
3330, 32eqtrd 2239 . . . . . . 7 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3424, 26, 33syl2an 289 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3523, 34eqtrd 2239 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
36353adant3 1020 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3736fveq2d 5593 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))) = (𝐵‘((♯‘𝐵) − 1)))
3822, 37eqtrd 2239 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘((♯‘𝐵) − 1)))
39 ccatcl 11072 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
40393adant3 1020 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
41 lswwrd 11062 . . 3 ((𝐴 ++ 𝐵) ∈ Word 𝑉 → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
4240, 41syl 14 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
43 lswwrd 11062 . . 3 (𝐵 ∈ Word 𝑉 → (lastS‘𝐵) = (𝐵‘((♯‘𝐵) − 1)))
44433ad2ant2 1022 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘𝐵) = (𝐵‘((♯‘𝐵) − 1)))
4538, 42, 443eqtr4d 2249 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wne 2377  c0 3464   class class class wbr 4051  cfv 5280  (class class class)co 5957  cc 7943  cr 7944  1c1 7946   + caddc 7948   < clt 8127  cmin 8263  cn 9056  cz 9392  +crp 9795  ..^cfzo 10284  chash 10942  Word cword 11016  lastSclsw 11060   ++ cconcat 11069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-fz 10151  df-fzo 10285  df-ihash 10943  df-word 11017  df-lsw 11061  df-concat 11070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator