ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatval2 Unicode version

Theorem ccatval2 11128
Description: Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
ccatval2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  I
)  =  ( T `
 ( I  -  ( `  S ) ) ) )

Proof of Theorem ccatval2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 wrdfin 11085 . . . 4  |-  ( S  e. Word  B  ->  S  e.  Fin )
2 wrdfin 11085 . . . 4  |-  ( T  e. Word  B  ->  T  e.  Fin )
3 ccatfvalfi 11122 . . . 4  |-  ( ( S  e.  Fin  /\  T  e.  Fin )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )
543adant3 1041 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( S ++  T
)  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T )
) )  |->  if ( x  e.  ( 0..^ ( `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( `  S
) ) ) ) ) )
6 eleq1 2292 . . . 4  |-  ( x  =  I  ->  (
x  e.  ( 0..^ ( `  S )
)  <->  I  e.  (
0..^ ( `  S )
) ) )
7 fveq2 5626 . . . 4  |-  ( x  =  I  ->  ( S `  x )  =  ( S `  I ) )
8 fvoveq1 6023 . . . 4  |-  ( x  =  I  ->  ( T `  ( x  -  ( `  S )
) )  =  ( T `  ( I  -  ( `  S
) ) ) )
96, 7, 8ifbieq12d 3629 . . 3  |-  ( x  =  I  ->  if ( x  e.  (
0..^ ( `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( `  S
) ) ) )  =  if ( I  e.  ( 0..^ ( `  S ) ) ,  ( S `  I
) ,  ( T `
 ( I  -  ( `  S ) ) ) ) )
10 fzodisj 10372 . . . . . 6  |-  ( ( 0..^ ( `  S
) )  i^i  (
( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  =  (/)
11 minel 3553 . . . . . 6  |-  ( ( I  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) )  /\  ( ( 0..^ ( `  S )
)  i^i  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) ) )  =  (/) )  ->  -.  I  e.  (
0..^ ( `  S )
) )
1210, 11mpan2 425 . . . . 5  |-  ( I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  -.  I  e.  (
0..^ ( `  S )
) )
13123ad2ant3 1044 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  -.  I  e.  ( 0..^ ( `  S
) ) )
1413iffalsed 3612 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  if ( I  e.  ( 0..^ ( `  S ) ) ,  ( S `  I
) ,  ( T `
 ( I  -  ( `  S ) ) ) )  =  ( T `  ( I  -  ( `  S
) ) ) )
159, 14sylan9eqr 2284 . 2  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) ) )  /\  x  =  I )  ->  if ( x  e.  (
0..^ ( `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( `  S
) ) ) )  =  ( T `  ( I  -  ( `  S ) ) ) )
161adantr 276 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  S  e.  Fin )
17 hashcl 10998 . . . . 5  |-  ( S  e.  Fin  ->  ( `  S )  e.  NN0 )
18 fzoss1 10365 . . . . . 6  |-  ( ( `  S )  e.  (
ZZ>= `  0 )  -> 
( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  C_  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
19 nn0uz 9753 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
2018, 19eleq2s 2324 . . . . 5  |-  ( ( `  S )  e.  NN0  ->  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  C_  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
2116, 17, 203syl 17 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  C_  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
2221sseld 3223 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( I  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) )  ->  I  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) ) )
23223impia 1224 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  I  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
24 simp2 1022 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  T  e. Word  B
)
25 elfzoelz 10339 . . . . 5  |-  ( I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  I  e.  ZZ )
26253ad2ant3 1044 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  I  e.  ZZ )
27 lencl 11070 . . . . . 6  |-  ( S  e. Word  B  ->  ( `  S )  e.  NN0 )
2827nn0zd 9563 . . . . 5  |-  ( S  e. Word  B  ->  ( `  S )  e.  ZZ )
29283ad2ant1 1042 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( `  S )  e.  ZZ )
3026, 29zsubcld 9570 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( I  -  ( `  S ) )  e.  ZZ )
31 fvexg 5645 . . 3  |-  ( ( T  e. Word  B  /\  ( I  -  ( `  S ) )  e.  ZZ )  ->  ( T `  ( I  -  ( `  S )
) )  e.  _V )
3224, 30, 31syl2anc 411 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( T `  ( I  -  ( `  S ) ) )  e.  _V )
335, 15, 23, 32fvmptd 5714 1  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  I
)  =  ( T `
 ( I  -  ( `  S ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196    C_ wss 3197   (/)c0 3491   ifcif 3602    |-> cmpt 4144   ` cfv 5317  (class class class)co 6000   Fincfn 6885   0cc0 7995    + caddc 7998    - cmin 8313   NN0cn0 9365   ZZcz 9442   ZZ>=cuz 9718  ..^cfzo 10334  ♯chash 10992  Word cword 11066   ++ cconcat 11120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121
This theorem is referenced by:  ccatval3  11129  ccatsymb  11132  ccatval21sw  11135  ccatlid  11136  ccatass  11138  ccatrn  11139  lswccatn0lsw  11141  ccats1val2  11166  ccatswrd  11197  ccatpfx  11228  pfxccatin12lem2  11258  pfxccatin12  11260
  Copyright terms: Public domain W3C validator