ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatval2 Unicode version

Theorem ccatval2 11029
Description: Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
ccatval2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  I
)  =  ( T `
 ( I  -  ( `  S ) ) ) )

Proof of Theorem ccatval2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 wrdfin 10988 . . . 4  |-  ( S  e. Word  B  ->  S  e.  Fin )
2 wrdfin 10988 . . . 4  |-  ( T  e. Word  B  ->  T  e.  Fin )
3 ccatfvalfi 11023 . . . 4  |-  ( ( S  e.  Fin  /\  T  e.  Fin )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )
543adant3 1019 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( S ++  T
)  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T )
) )  |->  if ( x  e.  ( 0..^ ( `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( `  S
) ) ) ) ) )
6 eleq1 2267 . . . 4  |-  ( x  =  I  ->  (
x  e.  ( 0..^ ( `  S )
)  <->  I  e.  (
0..^ ( `  S )
) ) )
7 fveq2 5570 . . . 4  |-  ( x  =  I  ->  ( S `  x )  =  ( S `  I ) )
8 fvoveq1 5957 . . . 4  |-  ( x  =  I  ->  ( T `  ( x  -  ( `  S )
) )  =  ( T `  ( I  -  ( `  S
) ) ) )
96, 7, 8ifbieq12d 3596 . . 3  |-  ( x  =  I  ->  if ( x  e.  (
0..^ ( `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( `  S
) ) ) )  =  if ( I  e.  ( 0..^ ( `  S ) ) ,  ( S `  I
) ,  ( T `
 ( I  -  ( `  S ) ) ) ) )
10 fzodisj 10283 . . . . . 6  |-  ( ( 0..^ ( `  S
) )  i^i  (
( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  =  (/)
11 minel 3521 . . . . . 6  |-  ( ( I  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) )  /\  ( ( 0..^ ( `  S )
)  i^i  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) ) )  =  (/) )  ->  -.  I  e.  (
0..^ ( `  S )
) )
1210, 11mpan2 425 . . . . 5  |-  ( I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  -.  I  e.  (
0..^ ( `  S )
) )
13123ad2ant3 1022 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  -.  I  e.  ( 0..^ ( `  S
) ) )
1413iffalsed 3580 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  if ( I  e.  ( 0..^ ( `  S ) ) ,  ( S `  I
) ,  ( T `
 ( I  -  ( `  S ) ) ) )  =  ( T `  ( I  -  ( `  S
) ) ) )
159, 14sylan9eqr 2259 . 2  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) ) )  /\  x  =  I )  ->  if ( x  e.  (
0..^ ( `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( `  S
) ) ) )  =  ( T `  ( I  -  ( `  S ) ) ) )
161adantr 276 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  S  e.  Fin )
17 hashcl 10907 . . . . 5  |-  ( S  e.  Fin  ->  ( `  S )  e.  NN0 )
18 fzoss1 10276 . . . . . 6  |-  ( ( `  S )  e.  (
ZZ>= `  0 )  -> 
( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  C_  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
19 nn0uz 9665 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
2018, 19eleq2s 2299 . . . . 5  |-  ( ( `  S )  e.  NN0  ->  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  C_  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
2116, 17, 203syl 17 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  C_  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
2221sseld 3191 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( I  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) )  ->  I  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) ) )
23223impia 1202 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  I  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
24 simp2 1000 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  T  e. Word  B
)
25 elfzoelz 10251 . . . . 5  |-  ( I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  I  e.  ZZ )
26253ad2ant3 1022 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  I  e.  ZZ )
27 lencl 10973 . . . . . 6  |-  ( S  e. Word  B  ->  ( `  S )  e.  NN0 )
2827nn0zd 9475 . . . . 5  |-  ( S  e. Word  B  ->  ( `  S )  e.  ZZ )
29283ad2ant1 1020 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( `  S )  e.  ZZ )
3026, 29zsubcld 9482 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( I  -  ( `  S ) )  e.  ZZ )
31 fvexg 5589 . . 3  |-  ( ( T  e. Word  B  /\  ( I  -  ( `  S ) )  e.  ZZ )  ->  ( T `  ( I  -  ( `  S )
) )  e.  _V )
3224, 30, 31syl2anc 411 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( T `  ( I  -  ( `  S ) ) )  e.  _V )
335, 15, 23, 32fvmptd 5654 1  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  I
)  =  ( T `
 ( I  -  ( `  S ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   _Vcvv 2771    i^i cin 3164    C_ wss 3165   (/)c0 3459   ifcif 3570    |-> cmpt 4104   ` cfv 5268  (class class class)co 5934   Fincfn 6817   0cc0 7907    + caddc 7910    - cmin 8225   NN0cn0 9277   ZZcz 9354   ZZ>=cuz 9630  ..^cfzo 10246  ♯chash 10901  Word cword 10969   ++ cconcat 11021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-fzo 10247  df-ihash 10902  df-word 10970  df-concat 11022
This theorem is referenced by:  ccatval3  11030  ccatsymb  11033  ccatval21sw  11036  ccatlid  11037  ccatass  11039  ccatrn  11040  lswccatn0lsw  11042
  Copyright terms: Public domain W3C validator