ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqexp GIF version

Theorem modqexp 10855
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
Hypotheses
Ref Expression
modqexp.a (𝜑𝐴 ∈ ℤ)
modqexp.b (𝜑𝐵 ∈ ℤ)
modqexp.c (𝜑𝐶 ∈ ℕ0)
modqexp.dq (𝜑𝐷 ∈ ℚ)
modqexp.dgt0 (𝜑 → 0 < 𝐷)
modqexp.mod (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
Assertion
Ref Expression
modqexp (𝜑 → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))

Proof of Theorem modqexp
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modqexp.c . 2 (𝜑𝐶 ∈ ℕ0)
2 oveq2 5982 . . . . . 6 (𝑤 = 0 → (𝐴𝑤) = (𝐴↑0))
32oveq1d 5989 . . . . 5 (𝑤 = 0 → ((𝐴𝑤) mod 𝐷) = ((𝐴↑0) mod 𝐷))
4 oveq2 5982 . . . . . 6 (𝑤 = 0 → (𝐵𝑤) = (𝐵↑0))
54oveq1d 5989 . . . . 5 (𝑤 = 0 → ((𝐵𝑤) mod 𝐷) = ((𝐵↑0) mod 𝐷))
63, 5eqeq12d 2224 . . . 4 (𝑤 = 0 → (((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷) ↔ ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷)))
76imbi2d 230 . . 3 (𝑤 = 0 → ((𝜑 → ((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷)) ↔ (𝜑 → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))))
8 oveq2 5982 . . . . . 6 (𝑤 = 𝑘 → (𝐴𝑤) = (𝐴𝑘))
98oveq1d 5989 . . . . 5 (𝑤 = 𝑘 → ((𝐴𝑤) mod 𝐷) = ((𝐴𝑘) mod 𝐷))
10 oveq2 5982 . . . . . 6 (𝑤 = 𝑘 → (𝐵𝑤) = (𝐵𝑘))
1110oveq1d 5989 . . . . 5 (𝑤 = 𝑘 → ((𝐵𝑤) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
129, 11eqeq12d 2224 . . . 4 (𝑤 = 𝑘 → (((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷) ↔ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)))
1312imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → ((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷)) ↔ (𝜑 → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))))
14 oveq2 5982 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴𝑤) = (𝐴↑(𝑘 + 1)))
1514oveq1d 5989 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐴𝑤) mod 𝐷) = ((𝐴↑(𝑘 + 1)) mod 𝐷))
16 oveq2 5982 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐵𝑤) = (𝐵↑(𝑘 + 1)))
1716oveq1d 5989 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐵𝑤) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
1815, 17eqeq12d 2224 . . . 4 (𝑤 = (𝑘 + 1) → (((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷) ↔ ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))
1918imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → ((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷)) ↔ (𝜑 → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
20 oveq2 5982 . . . . . 6 (𝑤 = 𝐶 → (𝐴𝑤) = (𝐴𝐶))
2120oveq1d 5989 . . . . 5 (𝑤 = 𝐶 → ((𝐴𝑤) mod 𝐷) = ((𝐴𝐶) mod 𝐷))
22 oveq2 5982 . . . . . 6 (𝑤 = 𝐶 → (𝐵𝑤) = (𝐵𝐶))
2322oveq1d 5989 . . . . 5 (𝑤 = 𝐶 → ((𝐵𝑤) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
2421, 23eqeq12d 2224 . . . 4 (𝑤 = 𝐶 → (((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷) ↔ ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
2524imbi2d 230 . . 3 (𝑤 = 𝐶 → ((𝜑 → ((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷)) ↔ (𝜑 → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))))
26 modqexp.a . . . . . . 7 (𝜑𝐴 ∈ ℤ)
2726zcnd 9538 . . . . . 6 (𝜑𝐴 ∈ ℂ)
28 exp0 10732 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2927, 28syl 14 . . . . 5 (𝜑 → (𝐴↑0) = 1)
30 modqexp.b . . . . . . 7 (𝜑𝐵 ∈ ℤ)
3130zcnd 9538 . . . . . 6 (𝜑𝐵 ∈ ℂ)
32 exp0 10732 . . . . . 6 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3331, 32syl 14 . . . . 5 (𝜑 → (𝐵↑0) = 1)
3429, 33eqtr4d 2245 . . . 4 (𝜑 → (𝐴↑0) = (𝐵↑0))
3534oveq1d 5989 . . 3 (𝜑 → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
36 zexpcl 10743 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
3726, 36sylan 283 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
3837adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴𝑘) ∈ ℤ)
39 zexpcl 10743 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℤ)
4030, 39sylan 283 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℤ)
4140adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵𝑘) ∈ ℤ)
4226ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℤ)
4330ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℤ)
44 modqexp.dq . . . . . . . . 9 (𝜑𝐷 ∈ ℚ)
4544ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐷 ∈ ℚ)
46 modqexp.dgt0 . . . . . . . . 9 (𝜑 → 0 < 𝐷)
4746ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 0 < 𝐷)
48 simpr 110 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
49 modqexp.mod . . . . . . . . 9 (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
5049ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
5138, 41, 42, 43, 45, 47, 48, 50modqmul12d 10567 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴𝑘) · 𝐴) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
5227ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℂ)
53 simpr 110 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5453adantr 276 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝑘 ∈ ℕ0)
55 expp1 10735 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5652, 54, 55syl2anc 411 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5756oveq1d 5989 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = (((𝐴𝑘) · 𝐴) mod 𝐷))
5831ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℂ)
59 expp1 10735 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6058, 54, 59syl2anc 411 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6160oveq1d 5989 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐵↑(𝑘 + 1)) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
6251, 57, 613eqtr4d 2252 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
6362ex 115 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))
6463expcom 116 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → (((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
6564a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝜑 → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
667, 13, 19, 25, 35, 65nn0ind 9529 . 2 (𝐶 ∈ ℕ0 → (𝜑 → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
671, 66mpcom 36 1 (𝜑 → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180   class class class wbr 4062  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  0cn0 9337  cz 9414  cq 9782   mod cmo 10511  cexp 10727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728
This theorem is referenced by:  dvdsmodexp  12272  odzdvds  12734  lgsmod  15670  lgsne0  15682
  Copyright terms: Public domain W3C validator