ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqexp GIF version

Theorem modqexp 10737
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
Hypotheses
Ref Expression
modqexp.a (𝜑𝐴 ∈ ℤ)
modqexp.b (𝜑𝐵 ∈ ℤ)
modqexp.c (𝜑𝐶 ∈ ℕ0)
modqexp.dq (𝜑𝐷 ∈ ℚ)
modqexp.dgt0 (𝜑 → 0 < 𝐷)
modqexp.mod (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
Assertion
Ref Expression
modqexp (𝜑 → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))

Proof of Theorem modqexp
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modqexp.c . 2 (𝜑𝐶 ∈ ℕ0)
2 oveq2 5926 . . . . . 6 (𝑤 = 0 → (𝐴𝑤) = (𝐴↑0))
32oveq1d 5933 . . . . 5 (𝑤 = 0 → ((𝐴𝑤) mod 𝐷) = ((𝐴↑0) mod 𝐷))
4 oveq2 5926 . . . . . 6 (𝑤 = 0 → (𝐵𝑤) = (𝐵↑0))
54oveq1d 5933 . . . . 5 (𝑤 = 0 → ((𝐵𝑤) mod 𝐷) = ((𝐵↑0) mod 𝐷))
63, 5eqeq12d 2208 . . . 4 (𝑤 = 0 → (((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷) ↔ ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷)))
76imbi2d 230 . . 3 (𝑤 = 0 → ((𝜑 → ((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷)) ↔ (𝜑 → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))))
8 oveq2 5926 . . . . . 6 (𝑤 = 𝑘 → (𝐴𝑤) = (𝐴𝑘))
98oveq1d 5933 . . . . 5 (𝑤 = 𝑘 → ((𝐴𝑤) mod 𝐷) = ((𝐴𝑘) mod 𝐷))
10 oveq2 5926 . . . . . 6 (𝑤 = 𝑘 → (𝐵𝑤) = (𝐵𝑘))
1110oveq1d 5933 . . . . 5 (𝑤 = 𝑘 → ((𝐵𝑤) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
129, 11eqeq12d 2208 . . . 4 (𝑤 = 𝑘 → (((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷) ↔ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)))
1312imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → ((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷)) ↔ (𝜑 → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))))
14 oveq2 5926 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴𝑤) = (𝐴↑(𝑘 + 1)))
1514oveq1d 5933 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐴𝑤) mod 𝐷) = ((𝐴↑(𝑘 + 1)) mod 𝐷))
16 oveq2 5926 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐵𝑤) = (𝐵↑(𝑘 + 1)))
1716oveq1d 5933 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐵𝑤) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
1815, 17eqeq12d 2208 . . . 4 (𝑤 = (𝑘 + 1) → (((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷) ↔ ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))
1918imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → ((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷)) ↔ (𝜑 → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
20 oveq2 5926 . . . . . 6 (𝑤 = 𝐶 → (𝐴𝑤) = (𝐴𝐶))
2120oveq1d 5933 . . . . 5 (𝑤 = 𝐶 → ((𝐴𝑤) mod 𝐷) = ((𝐴𝐶) mod 𝐷))
22 oveq2 5926 . . . . . 6 (𝑤 = 𝐶 → (𝐵𝑤) = (𝐵𝐶))
2322oveq1d 5933 . . . . 5 (𝑤 = 𝐶 → ((𝐵𝑤) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
2421, 23eqeq12d 2208 . . . 4 (𝑤 = 𝐶 → (((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷) ↔ ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
2524imbi2d 230 . . 3 (𝑤 = 𝐶 → ((𝜑 → ((𝐴𝑤) mod 𝐷) = ((𝐵𝑤) mod 𝐷)) ↔ (𝜑 → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))))
26 modqexp.a . . . . . . 7 (𝜑𝐴 ∈ ℤ)
2726zcnd 9440 . . . . . 6 (𝜑𝐴 ∈ ℂ)
28 exp0 10614 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2927, 28syl 14 . . . . 5 (𝜑 → (𝐴↑0) = 1)
30 modqexp.b . . . . . . 7 (𝜑𝐵 ∈ ℤ)
3130zcnd 9440 . . . . . 6 (𝜑𝐵 ∈ ℂ)
32 exp0 10614 . . . . . 6 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3331, 32syl 14 . . . . 5 (𝜑 → (𝐵↑0) = 1)
3429, 33eqtr4d 2229 . . . 4 (𝜑 → (𝐴↑0) = (𝐵↑0))
3534oveq1d 5933 . . 3 (𝜑 → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
36 zexpcl 10625 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
3726, 36sylan 283 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
3837adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴𝑘) ∈ ℤ)
39 zexpcl 10625 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℤ)
4030, 39sylan 283 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℤ)
4140adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵𝑘) ∈ ℤ)
4226ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℤ)
4330ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℤ)
44 modqexp.dq . . . . . . . . 9 (𝜑𝐷 ∈ ℚ)
4544ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐷 ∈ ℚ)
46 modqexp.dgt0 . . . . . . . . 9 (𝜑 → 0 < 𝐷)
4746ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 0 < 𝐷)
48 simpr 110 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
49 modqexp.mod . . . . . . . . 9 (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
5049ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
5138, 41, 42, 43, 45, 47, 48, 50modqmul12d 10449 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴𝑘) · 𝐴) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
5227ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℂ)
53 simpr 110 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5453adantr 276 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝑘 ∈ ℕ0)
55 expp1 10617 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5652, 54, 55syl2anc 411 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5756oveq1d 5933 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = (((𝐴𝑘) · 𝐴) mod 𝐷))
5831ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℂ)
59 expp1 10617 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6058, 54, 59syl2anc 411 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6160oveq1d 5933 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐵↑(𝑘 + 1)) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
6251, 57, 613eqtr4d 2236 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
6362ex 115 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))
6463expcom 116 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → (((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
6564a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝜑 → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
667, 13, 19, 25, 35, 65nn0ind 9431 . 2 (𝐶 ∈ ℕ0 → (𝜑 → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
671, 66mpcom 36 1 (𝜑 → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  0cn0 9240  cz 9317  cq 9684   mod cmo 10393  cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  dvdsmodexp  11938  odzdvds  12383  lgsmod  15142  lgsne0  15154
  Copyright terms: Public domain W3C validator