Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gcdmultiple | Unicode version |
Description: The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
gcdmultiple |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . . . . . 6 | |
2 | 1 | oveq2d 5858 | . . . . 5 |
3 | 2 | eqeq1d 2174 | . . . 4 |
4 | 3 | imbi2d 229 | . . 3 |
5 | oveq2 5850 | . . . . . 6 | |
6 | 5 | oveq2d 5858 | . . . . 5 |
7 | 6 | eqeq1d 2174 | . . . 4 |
8 | 7 | imbi2d 229 | . . 3 |
9 | oveq2 5850 | . . . . . 6 | |
10 | 9 | oveq2d 5858 | . . . . 5 |
11 | 10 | eqeq1d 2174 | . . . 4 |
12 | 11 | imbi2d 229 | . . 3 |
13 | oveq2 5850 | . . . . . 6 | |
14 | 13 | oveq2d 5858 | . . . . 5 |
15 | 14 | eqeq1d 2174 | . . . 4 |
16 | 15 | imbi2d 229 | . . 3 |
17 | nncn 8865 | . . . . . 6 | |
18 | 17 | mulid1d 7916 | . . . . 5 |
19 | 18 | oveq2d 5858 | . . . 4 |
20 | nnz 9210 | . . . . . 6 | |
21 | gcdid 11919 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | nnre 8864 | . . . . . 6 | |
24 | nnnn0 9121 | . . . . . . 7 | |
25 | 24 | nn0ge0d 9170 | . . . . . 6 |
26 | 23, 25 | absidd 11109 | . . . . 5 |
27 | 22, 26 | eqtrd 2198 | . . . 4 |
28 | 19, 27 | eqtrd 2198 | . . 3 |
29 | 20 | adantr 274 | . . . . . . . . 9 |
30 | nnz 9210 | . . . . . . . . . 10 | |
31 | zmulcl 9244 | . . . . . . . . . 10 | |
32 | 20, 30, 31 | syl2an 287 | . . . . . . . . 9 |
33 | 1z 9217 | . . . . . . . . . 10 | |
34 | gcdaddm 11917 | . . . . . . . . . 10 | |
35 | 33, 34 | mp3an1 1314 | . . . . . . . . 9 |
36 | 29, 32, 35 | syl2anc 409 | . . . . . . . 8 |
37 | nncn 8865 | . . . . . . . . . 10 | |
38 | ax-1cn 7846 | . . . . . . . . . . . 12 | |
39 | adddi 7885 | . . . . . . . . . . . 12 | |
40 | 38, 39 | mp3an3 1316 | . . . . . . . . . . 11 |
41 | mulcom 7882 | . . . . . . . . . . . . . 14 | |
42 | 38, 41 | mpan2 422 | . . . . . . . . . . . . 13 |
43 | 42 | adantr 274 | . . . . . . . . . . . 12 |
44 | 43 | oveq2d 5858 | . . . . . . . . . . 11 |
45 | 40, 44 | eqtrd 2198 | . . . . . . . . . 10 |
46 | 17, 37, 45 | syl2an 287 | . . . . . . . . 9 |
47 | 46 | oveq2d 5858 | . . . . . . . 8 |
48 | 36, 47 | eqtr4d 2201 | . . . . . . 7 |
49 | 48 | eqeq1d 2174 | . . . . . 6 |
50 | 49 | biimpd 143 | . . . . 5 |
51 | 50 | expcom 115 | . . . 4 |
52 | 51 | a2d 26 | . . 3 |
53 | 4, 8, 12, 16, 28, 52 | nnind 8873 | . 2 |
54 | 53 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cfv 5188 (class class class)co 5842 cc 7751 c1 7754 caddc 7756 cmul 7758 cn 8857 cz 9191 cabs 10939 cgcd 11875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-gcd 11876 |
This theorem is referenced by: gcdmultiplez 11954 rpmulgcd 11959 |
Copyright terms: Public domain | W3C validator |