ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsidlem Unicode version

Theorem prdsidlem 13466
Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsplusgcl.y  |-  Y  =  ( S X_s R )
prdsplusgcl.b  |-  B  =  ( Base `  Y
)
prdsplusgcl.p  |-  .+  =  ( +g  `  Y )
prdsplusgcl.s  |-  ( ph  ->  S  e.  V )
prdsplusgcl.i  |-  ( ph  ->  I  e.  W )
prdsplusgcl.r  |-  ( ph  ->  R : I --> Mnd )
prdsidlem.z  |-  .0.  =  ( 0g  o.  R
)
Assertion
Ref Expression
prdsidlem  |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
Distinct variable groups:    x,  .+    x, B   
x, I    x, R    ph, x    x, S    x, V    x, W    x, Y
Allowed substitution hint:    .0. ( x)

Proof of Theorem prdsidlem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prdsidlem.z . . . 4  |-  .0.  =  ( 0g  o.  R
)
2 prdsplusgcl.r . . . . . . 7  |-  ( ph  ->  R : I --> Mnd )
32ffvelcdmda 5763 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
43elexd 2813 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  _V )
52feqmptd 5680 . . . . 5  |-  ( ph  ->  R  =  ( y  e.  I  |->  ( R `
 y ) ) )
6 fn0g 13394 . . . . . 6  |-  0g  Fn  _V
7 dffn5im 5672 . . . . . 6  |-  ( 0g  Fn  _V  ->  0g  =  ( x  e. 
_V  |->  ( 0g `  x ) ) )
86, 7mp1i 10 . . . . 5  |-  ( ph  ->  0g  =  ( x  e.  _V  |->  ( 0g
`  x ) ) )
9 fveq2 5623 . . . . 5  |-  ( x  =  ( R `  y )  ->  ( 0g `  x )  =  ( 0g `  ( R `  y )
) )
104, 5, 8, 9fmptco 5794 . . . 4  |-  ( ph  ->  ( 0g  o.  R
)  =  ( y  e.  I  |->  ( 0g
`  ( R `  y ) ) ) )
111, 10eqtrid 2274 . . 3  |-  ( ph  ->  .0.  =  ( y  e.  I  |->  ( 0g
`  ( R `  y ) ) ) )
12 eqid 2229 . . . . . . 7  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
13 eqid 2229 . . . . . . 7  |-  ( 0g
`  ( R `  y ) )  =  ( 0g `  ( R `  y )
)
1412, 13mndidcl 13449 . . . . . 6  |-  ( ( R `  y )  e.  Mnd  ->  ( 0g `  ( R `  y ) )  e.  ( Base `  ( R `  y )
) )
153, 14syl 14 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  ( 0g `  ( R `  y ) )  e.  ( Base `  ( R `  y )
) )
1615ralrimiva 2603 . . . 4  |-  ( ph  ->  A. y  e.  I 
( 0g `  ( R `  y )
)  e.  ( Base `  ( R `  y
) ) )
17 prdsplusgcl.y . . . . 5  |-  Y  =  ( S X_s R )
18 prdsplusgcl.b . . . . 5  |-  B  =  ( Base `  Y
)
19 prdsplusgcl.s . . . . 5  |-  ( ph  ->  S  e.  V )
20 prdsplusgcl.i . . . . 5  |-  ( ph  ->  I  e.  W )
212ffnd 5470 . . . . 5  |-  ( ph  ->  R  Fn  I )
2217, 18, 19, 20, 21prdsbasmpt 13299 . . . 4  |-  ( ph  ->  ( ( y  e.  I  |->  ( 0g `  ( R `  y ) ) )  e.  B  <->  A. y  e.  I  ( 0g `  ( R `
 y ) )  e.  ( Base `  ( R `  y )
) ) )
2316, 22mpbird 167 . . 3  |-  ( ph  ->  ( y  e.  I  |->  ( 0g `  ( R `  y )
) )  e.  B
)
2411, 23eqeltrd 2306 . 2  |-  ( ph  ->  .0.  e.  B )
251fveq1i 5624 . . . . . . . . . 10  |-  (  .0.  `  y )  =  ( ( 0g  o.  R
) `  y )
26 fvco2 5696 . . . . . . . . . . 11  |-  ( ( R  Fn  I  /\  y  e.  I )  ->  ( ( 0g  o.  R ) `  y
)  =  ( 0g
`  ( R `  y ) ) )
2721, 26sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  I )  ->  (
( 0g  o.  R
) `  y )  =  ( 0g `  ( R `  y ) ) )
2825, 27eqtrid 2274 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  I )  ->  (  .0.  `  y )  =  ( 0g `  ( R `  y )
) )
2928adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (  .0.  `  y )  =  ( 0g `  ( R `  y )
) )
3029oveq1d 6009 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
(  .0.  `  y
) ( +g  `  ( R `  y )
) ( x `  y ) )  =  ( ( 0g `  ( R `  y ) ) ( +g  `  ( R `  y )
) ( x `  y ) ) )
312adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  R : I --> Mnd )
3231ffvelcdmda 5763 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
3319ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  S  e.  V )
3420ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  I  e.  W )
3521ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  R  Fn  I )
36 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  x  e.  B )
37 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  y  e.  I )
3817, 18, 33, 34, 35, 36, 37prdsbasprj 13301 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
x `  y )  e.  ( Base `  ( R `  y )
) )
39 eqid 2229 . . . . . . . . 9  |-  ( +g  `  ( R `  y
) )  =  ( +g  `  ( R `
 y ) )
4012, 39, 13mndlid 13454 . . . . . . . 8  |-  ( ( ( R `  y
)  e.  Mnd  /\  ( x `  y
)  e.  ( Base `  ( R `  y
) ) )  -> 
( ( 0g `  ( R `  y ) ) ( +g  `  ( R `  y )
) ( x `  y ) )  =  ( x `  y
) )
4132, 38, 40syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
( 0g `  ( R `  y )
) ( +g  `  ( R `  y )
) ( x `  y ) )  =  ( x `  y
) )
4230, 41eqtrd 2262 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
(  .0.  `  y
) ( +g  `  ( R `  y )
) ( x `  y ) )  =  ( x `  y
) )
4342mpteq2dva 4173 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
y  e.  I  |->  ( (  .0.  `  y
) ( +g  `  ( R `  y )
) ( x `  y ) ) )  =  ( y  e.  I  |->  ( x `  y ) ) )
4419adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  S  e.  V )
4520adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  I  e.  W )
4621adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  R  Fn  I )
4724adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  .0.  e.  B )
48 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  B )
49 prdsplusgcl.p . . . . . 6  |-  .+  =  ( +g  `  Y )
5017, 18, 44, 45, 46, 47, 48, 49prdsplusgval 13302 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  ( y  e.  I  |->  ( (  .0.  `  y ) ( +g  `  ( R `  y
) ) ( x `
 y ) ) ) )
5117, 18, 44, 45, 46, 48prdsbasfn 13300 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  x  Fn  I )
52 dffn5im 5672 . . . . . 6  |-  ( x  Fn  I  ->  x  =  ( y  e.  I  |->  ( x `  y ) ) )
5351, 52syl 14 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  x  =  ( y  e.  I  |->  ( x `  y ) ) )
5443, 50, 533eqtr4d 2272 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
5529oveq2d 6010 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
( x `  y
) ( +g  `  ( R `  y )
) (  .0.  `  y ) )  =  ( ( x `  y ) ( +g  `  ( R `  y
) ) ( 0g
`  ( R `  y ) ) ) )
5612, 39, 13mndrid 13455 . . . . . . . 8  |-  ( ( ( R `  y
)  e.  Mnd  /\  ( x `  y
)  e.  ( Base `  ( R `  y
) ) )  -> 
( ( x `  y ) ( +g  `  ( R `  y
) ) ( 0g
`  ( R `  y ) ) )  =  ( x `  y ) )
5732, 38, 56syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
( x `  y
) ( +g  `  ( R `  y )
) ( 0g `  ( R `  y ) ) )  =  ( x `  y ) )
5855, 57eqtrd 2262 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  I )  ->  (
( x `  y
) ( +g  `  ( R `  y )
) (  .0.  `  y ) )  =  ( x `  y
) )
5958mpteq2dva 4173 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
y  e.  I  |->  ( ( x `  y
) ( +g  `  ( R `  y )
) (  .0.  `  y ) ) )  =  ( y  e.  I  |->  ( x `  y ) ) )
6017, 18, 44, 45, 46, 48, 47, 49prdsplusgval 13302 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  ( y  e.  I  |->  ( ( x `
 y ) ( +g  `  ( R `
 y ) ) (  .0.  `  y
) ) ) )
6159, 60, 533eqtr4d 2272 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
6254, 61jca 306 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
6362ralrimiva 2603 . 2  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
6424, 63jca 306 1  |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    |-> cmpt 4144    o. ccom 4720    Fn wfn 5309   -->wf 5310   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   0gc0g 13275   X_scprds 13284   Mndcmnd 13435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-map 6787  df-ixp 6836  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-fz 10193  df-struct 13020  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-mulr 13110  df-sca 13112  df-vsca 13113  df-ip 13114  df-tset 13115  df-ple 13116  df-ds 13118  df-hom 13120  df-cco 13121  df-rest 13260  df-topn 13261  df-0g 13277  df-topgen 13279  df-pt 13280  df-prds 13286  df-mgm 13375  df-sgrp 13421  df-mnd 13436
This theorem is referenced by:  prdsmndd  13467  prds0g  13468
  Copyright terms: Public domain W3C validator