| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsidlem | Unicode version | ||
| Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| prdsplusgcl.y |
|
| prdsplusgcl.b |
|
| prdsplusgcl.p |
|
| prdsplusgcl.s |
|
| prdsplusgcl.i |
|
| prdsplusgcl.r |
|
| prdsidlem.z |
|
| Ref | Expression |
|---|---|
| prdsidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsidlem.z |
. . . 4
| |
| 2 | prdsplusgcl.r |
. . . . . . 7
| |
| 3 | 2 | ffvelcdmda 5763 |
. . . . . 6
|
| 4 | 3 | elexd 2813 |
. . . . 5
|
| 5 | 2 | feqmptd 5680 |
. . . . 5
|
| 6 | fn0g 13394 |
. . . . . 6
| |
| 7 | dffn5im 5672 |
. . . . . 6
| |
| 8 | 6, 7 | mp1i 10 |
. . . . 5
|
| 9 | fveq2 5623 |
. . . . 5
| |
| 10 | 4, 5, 8, 9 | fmptco 5794 |
. . . 4
|
| 11 | 1, 10 | eqtrid 2274 |
. . 3
|
| 12 | eqid 2229 |
. . . . . . 7
| |
| 13 | eqid 2229 |
. . . . . . 7
| |
| 14 | 12, 13 | mndidcl 13449 |
. . . . . 6
|
| 15 | 3, 14 | syl 14 |
. . . . 5
|
| 16 | 15 | ralrimiva 2603 |
. . . 4
|
| 17 | prdsplusgcl.y |
. . . . 5
| |
| 18 | prdsplusgcl.b |
. . . . 5
| |
| 19 | prdsplusgcl.s |
. . . . 5
| |
| 20 | prdsplusgcl.i |
. . . . 5
| |
| 21 | 2 | ffnd 5470 |
. . . . 5
|
| 22 | 17, 18, 19, 20, 21 | prdsbasmpt 13299 |
. . . 4
|
| 23 | 16, 22 | mpbird 167 |
. . 3
|
| 24 | 11, 23 | eqeltrd 2306 |
. 2
|
| 25 | 1 | fveq1i 5624 |
. . . . . . . . . 10
|
| 26 | fvco2 5696 |
. . . . . . . . . . 11
| |
| 27 | 21, 26 | sylan 283 |
. . . . . . . . . 10
|
| 28 | 25, 27 | eqtrid 2274 |
. . . . . . . . 9
|
| 29 | 28 | adantlr 477 |
. . . . . . . 8
|
| 30 | 29 | oveq1d 6009 |
. . . . . . 7
|
| 31 | 2 | adantr 276 |
. . . . . . . . 9
|
| 32 | 31 | ffvelcdmda 5763 |
. . . . . . . 8
|
| 33 | 19 | ad2antrr 488 |
. . . . . . . . 9
|
| 34 | 20 | ad2antrr 488 |
. . . . . . . . 9
|
| 35 | 21 | ad2antrr 488 |
. . . . . . . . 9
|
| 36 | simplr 528 |
. . . . . . . . 9
| |
| 37 | simpr 110 |
. . . . . . . . 9
| |
| 38 | 17, 18, 33, 34, 35, 36, 37 | prdsbasprj 13301 |
. . . . . . . 8
|
| 39 | eqid 2229 |
. . . . . . . . 9
| |
| 40 | 12, 39, 13 | mndlid 13454 |
. . . . . . . 8
|
| 41 | 32, 38, 40 | syl2anc 411 |
. . . . . . 7
|
| 42 | 30, 41 | eqtrd 2262 |
. . . . . 6
|
| 43 | 42 | mpteq2dva 4173 |
. . . . 5
|
| 44 | 19 | adantr 276 |
. . . . . 6
|
| 45 | 20 | adantr 276 |
. . . . . 6
|
| 46 | 21 | adantr 276 |
. . . . . 6
|
| 47 | 24 | adantr 276 |
. . . . . 6
|
| 48 | simpr 110 |
. . . . . 6
| |
| 49 | prdsplusgcl.p |
. . . . . 6
| |
| 50 | 17, 18, 44, 45, 46, 47, 48, 49 | prdsplusgval 13302 |
. . . . 5
|
| 51 | 17, 18, 44, 45, 46, 48 | prdsbasfn 13300 |
. . . . . 6
|
| 52 | dffn5im 5672 |
. . . . . 6
| |
| 53 | 51, 52 | syl 14 |
. . . . 5
|
| 54 | 43, 50, 53 | 3eqtr4d 2272 |
. . . 4
|
| 55 | 29 | oveq2d 6010 |
. . . . . . 7
|
| 56 | 12, 39, 13 | mndrid 13455 |
. . . . . . . 8
|
| 57 | 32, 38, 56 | syl2anc 411 |
. . . . . . 7
|
| 58 | 55, 57 | eqtrd 2262 |
. . . . . 6
|
| 59 | 58 | mpteq2dva 4173 |
. . . . 5
|
| 60 | 17, 18, 44, 45, 46, 48, 47, 49 | prdsplusgval 13302 |
. . . . 5
|
| 61 | 59, 60, 53 | 3eqtr4d 2272 |
. . . 4
|
| 62 | 54, 61 | jca 306 |
. . 3
|
| 63 | 62 | ralrimiva 2603 |
. 2
|
| 64 | 24, 63 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-map 6787 df-ixp 6836 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-fz 10193 df-struct 13020 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-mulr 13110 df-sca 13112 df-vsca 13113 df-ip 13114 df-tset 13115 df-ple 13116 df-ds 13118 df-hom 13120 df-cco 13121 df-rest 13260 df-topn 13261 df-0g 13277 df-topgen 13279 df-pt 13280 df-prds 13286 df-mgm 13375 df-sgrp 13421 df-mnd 13436 |
| This theorem is referenced by: prdsmndd 13467 prds0g 13468 |
| Copyright terms: Public domain | W3C validator |