| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsmndd | Unicode version | ||
| Description: The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| prdsmndd.y |
|
| prdsmndd.i |
|
| prdsmndd.s |
|
| prdsmndd.r |
|
| Ref | Expression |
|---|---|
| prdsmndd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2197 |
. 2
| |
| 2 | eqidd 2197 |
. 2
| |
| 3 | prdsmndd.y |
. . . 4
| |
| 4 | eqid 2196 |
. . . 4
| |
| 5 | eqid 2196 |
. . . 4
| |
| 6 | prdsmndd.s |
. . . . . 6
| |
| 7 | 6 | elexd 2776 |
. . . . 5
|
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | prdsmndd.i |
. . . . . 6
| |
| 10 | 9 | elexd 2776 |
. . . . 5
|
| 11 | 10 | adantr 276 |
. . . 4
|
| 12 | prdsmndd.r |
. . . . 5
| |
| 13 | 12 | adantr 276 |
. . . 4
|
| 14 | simprl 529 |
. . . 4
| |
| 15 | simprr 531 |
. . . 4
| |
| 16 | 3, 4, 5, 8, 11, 13, 14, 15 | prdsplusgcl 13148 |
. . 3
|
| 17 | 16 | 3impb 1201 |
. 2
|
| 18 | 12 | ffvelcdmda 5700 |
. . . . . . 7
|
| 19 | 18 | adantlr 477 |
. . . . . 6
|
| 20 | 7 | ad2antrr 488 |
. . . . . . 7
|
| 21 | 10 | ad2antrr 488 |
. . . . . . 7
|
| 22 | 12 | ffnd 5411 |
. . . . . . . 8
|
| 23 | 22 | ad2antrr 488 |
. . . . . . 7
|
| 24 | simplr1 1041 |
. . . . . . 7
| |
| 25 | simpr 110 |
. . . . . . 7
| |
| 26 | 3, 4, 20, 21, 23, 24, 25 | prdsbasprj 12984 |
. . . . . 6
|
| 27 | simplr2 1042 |
. . . . . . 7
| |
| 28 | 3, 4, 20, 21, 23, 27, 25 | prdsbasprj 12984 |
. . . . . 6
|
| 29 | simplr3 1043 |
. . . . . . 7
| |
| 30 | 3, 4, 20, 21, 23, 29, 25 | prdsbasprj 12984 |
. . . . . 6
|
| 31 | eqid 2196 |
. . . . . . 7
| |
| 32 | eqid 2196 |
. . . . . . 7
| |
| 33 | 31, 32 | mndass 13126 |
. . . . . 6
|
| 34 | 19, 26, 28, 30, 33 | syl13anc 1251 |
. . . . 5
|
| 35 | 3, 4, 20, 21, 23, 24, 27, 5, 25 | prdsplusgfval 12986 |
. . . . . 6
|
| 36 | 35 | oveq1d 5940 |
. . . . 5
|
| 37 | 3, 4, 20, 21, 23, 27, 29, 5, 25 | prdsplusgfval 12986 |
. . . . . 6
|
| 38 | 37 | oveq2d 5941 |
. . . . 5
|
| 39 | 34, 36, 38 | 3eqtr4d 2239 |
. . . 4
|
| 40 | 39 | mpteq2dva 4124 |
. . 3
|
| 41 | 7 | adantr 276 |
. . . 4
|
| 42 | 10 | adantr 276 |
. . . 4
|
| 43 | 22 | adantr 276 |
. . . 4
|
| 44 | 16 | 3adantr3 1160 |
. . . 4
|
| 45 | simpr3 1007 |
. . . 4
| |
| 46 | 3, 4, 41, 42, 43, 44, 45, 5 | prdsplusgval 12985 |
. . 3
|
| 47 | simpr1 1005 |
. . . 4
| |
| 48 | 12 | adantr 276 |
. . . . 5
|
| 49 | simpr2 1006 |
. . . . 5
| |
| 50 | 3, 4, 5, 41, 42, 48, 49, 45 | prdsplusgcl 13148 |
. . . 4
|
| 51 | 3, 4, 41, 42, 43, 47, 50, 5 | prdsplusgval 12985 |
. . 3
|
| 52 | 40, 46, 51 | 3eqtr4d 2239 |
. 2
|
| 53 | eqid 2196 |
. . . 4
| |
| 54 | 3, 4, 5, 7, 10, 12, 53 | prdsidlem 13149 |
. . 3
|
| 55 | 54 | simpld 112 |
. 2
|
| 56 | 54 | simprd 114 |
. . . 4
|
| 57 | 56 | r19.21bi 2585 |
. . 3
|
| 58 | 57 | simpld 112 |
. 2
|
| 59 | 57 | simprd 114 |
. 2
|
| 60 | 1, 2, 17, 52, 55, 58, 59 | ismndd 13139 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-ixp 6767 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-fz 10101 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-tset 12799 df-ple 12800 df-ds 12802 df-hom 12804 df-cco 12805 df-rest 12943 df-topn 12944 df-0g 12960 df-topgen 12962 df-pt 12963 df-prds 12969 df-mgm 13058 df-sgrp 13104 df-mnd 13119 |
| This theorem is referenced by: prds0g 13151 pwsmnd 13152 prdsgrpd 13311 |
| Copyright terms: Public domain | W3C validator |