ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqcld Unicode version

Theorem resqcld 10628
Description: Closure of square in reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
resqcld.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
resqcld  |-  ( ph  ->  ( A ^ 2 )  e.  RR )

Proof of Theorem resqcld
StepHypRef Expression
1 resqcld.1 . 2  |-  ( ph  ->  A  e.  RR )
2 resqcl 10536 . 2  |-  ( A  e.  RR  ->  ( A ^ 2 )  e.  RR )
31, 2syl 14 1  |-  ( ph  ->  ( A ^ 2 )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141  (class class class)co 5851   RRcr 7766   2c2 8922   ^cexp 10468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-n0 9129  df-z 9206  df-uz 9481  df-seqfrec 10395  df-exp 10469
This theorem is referenced by:  sq11ap  10636  cjmulge0  10846  resqrexlemover  10967  resqrexlemcalc2  10972  resqrexlemcalc3  10973  resqrexlemnmsq  10974  resqrexlemnm  10975  resqrexlemglsq  10979  resqrexlemsqa  10981  sqrtsq  11001  abs00ap  11019  absext  11020  absrele  11040  abstri  11061  amgm2  11075  bdtrilem  11195  sinbnd  11708  cosbnd  11709  cos01bnd  11714  cos01gt0  11718  absefi  11724  isprm5lem  12088  isprm5  12089  pythagtriplem10  12216  pockthg  12302  dveflem  13446  tangtx  13518
  Copyright terms: Public domain W3C validator