ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqcld Unicode version

Theorem resqcld 10791
Description: Closure of square in reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
resqcld.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
resqcld  |-  ( ph  ->  ( A ^ 2 )  e.  RR )

Proof of Theorem resqcld
StepHypRef Expression
1 resqcld.1 . 2  |-  ( ph  ->  A  e.  RR )
2 resqcl 10699 . 2  |-  ( A  e.  RR  ->  ( A ^ 2 )  e.  RR )
31, 2syl 14 1  |-  ( ph  ->  ( A ^ 2 )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167  (class class class)co 5922   RRcr 7878   2c2 9041   ^cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  sq11ap  10799  zzlesq  10800  cjmulge0  11054  resqrexlemover  11175  resqrexlemcalc2  11180  resqrexlemcalc3  11181  resqrexlemnmsq  11182  resqrexlemnm  11183  resqrexlemglsq  11187  resqrexlemsqa  11189  sqrtsq  11209  abs00ap  11227  absext  11228  absrele  11248  abstri  11269  amgm2  11283  bdtrilem  11404  sinbnd  11917  cosbnd  11918  cos01bnd  11923  cos01gt0  11928  absefi  11934  isprm5lem  12309  isprm5  12310  pythagtriplem10  12438  pockthg  12526  4sqexercise2  12568  4sqlemsdc  12569  4sqlem12  12571  4sqlem15  12574  4sqlem16  12575  dveflem  14962  tangtx  15074
  Copyright terms: Public domain W3C validator