ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmmgm GIF version

Theorem rnglidlmmgm 14176
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
rnglidlabl.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglidlmmgm ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)

Proof of Theorem rnglidlmmgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑅 ∈ Rng)
2 rnglidlabl.l . . . . . . . . 9 𝐿 = (LIdeal‘𝑅)
3 rnglidlabl.i . . . . . . . . 9 𝐼 = (𝑅s 𝑈)
42, 3lidlbas 14158 . . . . . . . 8 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
5 eleq1a 2276 . . . . . . . 8 (𝑈𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿))
64, 5mpd 13 . . . . . . 7 (𝑈𝐿 → (Base‘𝐼) ∈ 𝐿)
763ad2ant2 1021 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (Base‘𝐼) ∈ 𝐿)
84eqcomd 2210 . . . . . . . . 9 (𝑈𝐿𝑈 = (Base‘𝐼))
98eleq2d 2274 . . . . . . . 8 (𝑈𝐿 → ( 0𝑈0 ∈ (Base‘𝐼)))
109biimpa 296 . . . . . . 7 ((𝑈𝐿0𝑈) → 0 ∈ (Base‘𝐼))
11103adant1 1017 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 0 ∈ (Base‘𝐼))
121, 7, 113jca 1179 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿0 ∈ (Base‘𝐼)))
132, 3lidlssbas 14157 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
1413sseld 3191 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
15143ad2ant2 1021 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1615anim1d 336 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))))
1716imp 124 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼)))
18 rnglidlabl.z . . . . . 6 0 = (0g𝑅)
19 eqid 2204 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
20 eqid 2204 . . . . . 6 (.r𝑅) = (.r𝑅)
2118, 19, 20, 2rnglidlmcl 14160 . . . . 5 (((𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿0 ∈ (Base‘𝐼)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
2212, 17, 21syl2an2r 595 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
23 simp2 1000 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑈𝐿)
243, 20ressmulrg 12895 . . . . . . . . 9 ((𝑈𝐿𝑅 ∈ Rng) → (.r𝑅) = (.r𝐼))
2523, 1, 24syl2anc 411 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝑅) = (.r𝐼))
2625eqcomd 2210 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝐼) = (.r𝑅))
2726oveqd 5951 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
2827eleq1d 2273 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
2928adantr 276 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
3022, 29mpbird 167 . . 3 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼))
3130ralrimivva 2587 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼))
32 ressex 12816 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿) → (𝑅s 𝑈) ∈ V)
333, 32eqeltrid 2291 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿) → 𝐼 ∈ V)
341, 23, 33syl2anc 411 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝐼 ∈ V)
35 eqid 2204 . . . . 5 (mulGrp‘𝐼) = (mulGrp‘𝐼)
3635mgpex 13605 . . . 4 (𝐼 ∈ V → (mulGrp‘𝐼) ∈ V)
37 eqid 2204 . . . . 5 (Base‘(mulGrp‘𝐼)) = (Base‘(mulGrp‘𝐼))
38 eqid 2204 . . . . 5 (+g‘(mulGrp‘𝐼)) = (+g‘(mulGrp‘𝐼))
3937, 38ismgm 13107 . . . 4 ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
4034, 36, 393syl 17 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
41 eqid 2204 . . . . . 6 (Base‘𝐼) = (Base‘𝐼)
4235, 41mgpbasg 13606 . . . . 5 (𝐼 ∈ V → (Base‘𝐼) = (Base‘(mulGrp‘𝐼)))
4334, 42syl 14 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (Base‘𝐼) = (Base‘(mulGrp‘𝐼)))
44 eqid 2204 . . . . . . . . 9 (.r𝐼) = (.r𝐼)
4535, 44mgpplusgg 13604 . . . . . . . 8 (𝐼 ∈ V → (.r𝐼) = (+g‘(mulGrp‘𝐼)))
4634, 45syl 14 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝐼) = (+g‘(mulGrp‘𝐼)))
4746oveqd 5951 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎(.r𝐼)𝑏) = (𝑎(+g‘(mulGrp‘𝐼))𝑏))
4847, 43eleq12d 2275 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
4943, 48raleqbidv 2717 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
5043, 49raleqbidv 2717 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
5140, 50bitr4d 191 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼)))
5231, 51mpbird 167 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  cfv 5268  (class class class)co 5934  Basecbs 12751  s cress 12752  +gcplusg 12828  .rcmulr 12829  0gc0g 13006  Mgmcmgm 13104  mulGrpcmgp 13600  Rngcrng 13612  LIdealclidl 14147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-iress 12759  df-plusg 12841  df-mulr 12842  df-sca 12844  df-vsca 12845  df-ip 12846  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-abl 13541  df-mgp 13601  df-rng 13613  df-lssm 14033  df-sra 14115  df-rgmod 14116  df-lidl 14149
This theorem is referenced by:  rnglidlmsgrp  14177
  Copyright terms: Public domain W3C validator