ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmmgm GIF version

Theorem rnglidlmmgm 14333
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
rnglidlabl.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglidlmmgm ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)

Proof of Theorem rnglidlmmgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑅 ∈ Rng)
2 rnglidlabl.l . . . . . . . . 9 𝐿 = (LIdeal‘𝑅)
3 rnglidlabl.i . . . . . . . . 9 𝐼 = (𝑅s 𝑈)
42, 3lidlbas 14315 . . . . . . . 8 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
5 eleq1a 2278 . . . . . . . 8 (𝑈𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿))
64, 5mpd 13 . . . . . . 7 (𝑈𝐿 → (Base‘𝐼) ∈ 𝐿)
763ad2ant2 1022 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (Base‘𝐼) ∈ 𝐿)
84eqcomd 2212 . . . . . . . . 9 (𝑈𝐿𝑈 = (Base‘𝐼))
98eleq2d 2276 . . . . . . . 8 (𝑈𝐿 → ( 0𝑈0 ∈ (Base‘𝐼)))
109biimpa 296 . . . . . . 7 ((𝑈𝐿0𝑈) → 0 ∈ (Base‘𝐼))
11103adant1 1018 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 0 ∈ (Base‘𝐼))
121, 7, 113jca 1180 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿0 ∈ (Base‘𝐼)))
132, 3lidlssbas 14314 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
1413sseld 3196 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
15143ad2ant2 1022 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1615anim1d 336 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))))
1716imp 124 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼)))
18 rnglidlabl.z . . . . . 6 0 = (0g𝑅)
19 eqid 2206 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
20 eqid 2206 . . . . . 6 (.r𝑅) = (.r𝑅)
2118, 19, 20, 2rnglidlmcl 14317 . . . . 5 (((𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿0 ∈ (Base‘𝐼)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
2212, 17, 21syl2an2r 595 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
23 simp2 1001 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑈𝐿)
243, 20ressmulrg 13052 . . . . . . . . 9 ((𝑈𝐿𝑅 ∈ Rng) → (.r𝑅) = (.r𝐼))
2523, 1, 24syl2anc 411 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝑅) = (.r𝐼))
2625eqcomd 2212 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝐼) = (.r𝑅))
2726oveqd 5974 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
2827eleq1d 2275 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
2928adantr 276 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
3022, 29mpbird 167 . . 3 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼))
3130ralrimivva 2589 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼))
32 ressex 12972 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿) → (𝑅s 𝑈) ∈ V)
333, 32eqeltrid 2293 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿) → 𝐼 ∈ V)
341, 23, 33syl2anc 411 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝐼 ∈ V)
35 eqid 2206 . . . . 5 (mulGrp‘𝐼) = (mulGrp‘𝐼)
3635mgpex 13762 . . . 4 (𝐼 ∈ V → (mulGrp‘𝐼) ∈ V)
37 eqid 2206 . . . . 5 (Base‘(mulGrp‘𝐼)) = (Base‘(mulGrp‘𝐼))
38 eqid 2206 . . . . 5 (+g‘(mulGrp‘𝐼)) = (+g‘(mulGrp‘𝐼))
3937, 38ismgm 13264 . . . 4 ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
4034, 36, 393syl 17 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
41 eqid 2206 . . . . . 6 (Base‘𝐼) = (Base‘𝐼)
4235, 41mgpbasg 13763 . . . . 5 (𝐼 ∈ V → (Base‘𝐼) = (Base‘(mulGrp‘𝐼)))
4334, 42syl 14 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (Base‘𝐼) = (Base‘(mulGrp‘𝐼)))
44 eqid 2206 . . . . . . . . 9 (.r𝐼) = (.r𝐼)
4535, 44mgpplusgg 13761 . . . . . . . 8 (𝐼 ∈ V → (.r𝐼) = (+g‘(mulGrp‘𝐼)))
4634, 45syl 14 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝐼) = (+g‘(mulGrp‘𝐼)))
4746oveqd 5974 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎(.r𝐼)𝑏) = (𝑎(+g‘(mulGrp‘𝐼))𝑏))
4847, 43eleq12d 2277 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
4943, 48raleqbidv 2719 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
5043, 49raleqbidv 2719 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
5140, 50bitr4d 191 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼)))
5231, 51mpbird 167 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  cfv 5280  (class class class)co 5957  Basecbs 12907  s cress 12908  +gcplusg 12984  .rcmulr 12985  0gc0g 13163  Mgmcmgm 13261  mulGrpcmgp 13757  Rngcrng 13769  LIdealclidl 14304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-ip 13002  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-abl 13698  df-mgp 13758  df-rng 13770  df-lssm 14190  df-sra 14272  df-rgmod 14273  df-lidl 14306
This theorem is referenced by:  rnglidlmsgrp  14334
  Copyright terms: Public domain W3C validator