ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmmgm GIF version

Theorem rnglidlmmgm 14454
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
rnglidlabl.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglidlmmgm ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)

Proof of Theorem rnglidlmmgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1021 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑅 ∈ Rng)
2 rnglidlabl.l . . . . . . . . 9 𝐿 = (LIdeal‘𝑅)
3 rnglidlabl.i . . . . . . . . 9 𝐼 = (𝑅s 𝑈)
42, 3lidlbas 14436 . . . . . . . 8 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
5 eleq1a 2301 . . . . . . . 8 (𝑈𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿))
64, 5mpd 13 . . . . . . 7 (𝑈𝐿 → (Base‘𝐼) ∈ 𝐿)
763ad2ant2 1043 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (Base‘𝐼) ∈ 𝐿)
84eqcomd 2235 . . . . . . . . 9 (𝑈𝐿𝑈 = (Base‘𝐼))
98eleq2d 2299 . . . . . . . 8 (𝑈𝐿 → ( 0𝑈0 ∈ (Base‘𝐼)))
109biimpa 296 . . . . . . 7 ((𝑈𝐿0𝑈) → 0 ∈ (Base‘𝐼))
11103adant1 1039 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 0 ∈ (Base‘𝐼))
121, 7, 113jca 1201 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿0 ∈ (Base‘𝐼)))
132, 3lidlssbas 14435 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
1413sseld 3223 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
15143ad2ant2 1043 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1615anim1d 336 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))))
1716imp 124 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼)))
18 rnglidlabl.z . . . . . 6 0 = (0g𝑅)
19 eqid 2229 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
20 eqid 2229 . . . . . 6 (.r𝑅) = (.r𝑅)
2118, 19, 20, 2rnglidlmcl 14438 . . . . 5 (((𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿0 ∈ (Base‘𝐼)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
2212, 17, 21syl2an2r 597 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
23 simp2 1022 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑈𝐿)
243, 20ressmulrg 13173 . . . . . . . . 9 ((𝑈𝐿𝑅 ∈ Rng) → (.r𝑅) = (.r𝐼))
2523, 1, 24syl2anc 411 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝑅) = (.r𝐼))
2625eqcomd 2235 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝐼) = (.r𝑅))
2726oveqd 6017 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
2827eleq1d 2298 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
2928adantr 276 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
3022, 29mpbird 167 . . 3 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼))
3130ralrimivva 2612 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼))
32 ressex 13093 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿) → (𝑅s 𝑈) ∈ V)
333, 32eqeltrid 2316 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿) → 𝐼 ∈ V)
341, 23, 33syl2anc 411 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝐼 ∈ V)
35 eqid 2229 . . . . 5 (mulGrp‘𝐼) = (mulGrp‘𝐼)
3635mgpex 13883 . . . 4 (𝐼 ∈ V → (mulGrp‘𝐼) ∈ V)
37 eqid 2229 . . . . 5 (Base‘(mulGrp‘𝐼)) = (Base‘(mulGrp‘𝐼))
38 eqid 2229 . . . . 5 (+g‘(mulGrp‘𝐼)) = (+g‘(mulGrp‘𝐼))
3937, 38ismgm 13385 . . . 4 ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
4034, 36, 393syl 17 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
41 eqid 2229 . . . . . 6 (Base‘𝐼) = (Base‘𝐼)
4235, 41mgpbasg 13884 . . . . 5 (𝐼 ∈ V → (Base‘𝐼) = (Base‘(mulGrp‘𝐼)))
4334, 42syl 14 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (Base‘𝐼) = (Base‘(mulGrp‘𝐼)))
44 eqid 2229 . . . . . . . . 9 (.r𝐼) = (.r𝐼)
4535, 44mgpplusgg 13882 . . . . . . . 8 (𝐼 ∈ V → (.r𝐼) = (+g‘(mulGrp‘𝐼)))
4634, 45syl 14 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝐼) = (+g‘(mulGrp‘𝐼)))
4746oveqd 6017 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎(.r𝐼)𝑏) = (𝑎(+g‘(mulGrp‘𝐼))𝑏))
4847, 43eleq12d 2300 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
4943, 48raleqbidv 2744 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
5043, 49raleqbidv 2744 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))(𝑎(+g‘(mulGrp‘𝐼))𝑏) ∈ (Base‘(mulGrp‘𝐼))))
5140, 50bitr4d 191 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼)))
5231, 51mpbird 167 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  cfv 5317  (class class class)co 6000  Basecbs 13027  s cress 13028  +gcplusg 13105  .rcmulr 13106  0gc0g 13284  Mgmcmgm 13382  mulGrpcmgp 13878  Rngcrng 13890  LIdealclidl 14425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-ip 13123  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-abl 13819  df-mgp 13879  df-rng 13891  df-lssm 14311  df-sra 14393  df-rgmod 14394  df-lidl 14427
This theorem is referenced by:  rnglidlmsgrp  14455
  Copyright terms: Public domain W3C validator