ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3fveq GIF version

Theorem seq3fveq 10427
Description: Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.)
Hypotheses
Ref Expression
iseqfveq.1 (𝜑𝑁 ∈ (ℤ𝑀))
iseqfveq.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
iseqfveq.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqfveq.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqfveq.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3fveq (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   𝑘,𝑁,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦

Proof of Theorem seq3fveq
StepHypRef Expression
1 iseqfveq.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 9492 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . 3 (𝜑𝑀 ∈ ℤ)
4 uzid 9501 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
53, 4syl 14 . 2 (𝜑𝑀 ∈ (ℤ𝑀))
6 iseqfveq.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
7 iseqfveq.pl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
83, 6, 7seq3-1 10416 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
9 fveq2 5496 . . . . 5 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
10 fveq2 5496 . . . . 5 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
119, 10eqeq12d 2185 . . . 4 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑀) = (𝐺𝑀)))
12 iseqfveq.2 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
1312ralrimiva 2543 . . . 4 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺𝑘))
14 eluzfz1 9987 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
151, 14syl 14 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
1611, 13, 15rspcdva 2839 . . 3 (𝜑 → (𝐹𝑀) = (𝐺𝑀))
178, 16eqtrd 2203 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐺𝑀))
18 iseqfveq.g . 2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
19 fzp1ss 10029 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
203, 19syl 14 . . . 4 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2120sselda 3147 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
2221, 12syldan 280 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
235, 17, 6, 18, 7, 1, 22seq3fveq2 10425 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wss 3121  cfv 5198  (class class class)co 5853  1c1 7775   + caddc 7777  cz 9212  cuz 9487  ...cfz 9965  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-seqfrec 10402
This theorem is referenced by:  seq3feq  10428  seq3f1olemqsumk  10455  seq3f1olemqsum  10456  seq3f1oleml  10459  seq3f1o  10460  fsum3  11350  fsum3ser  11360  fprodseq  11546  fprodntrivap  11547
  Copyright terms: Public domain W3C validator