ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phivalfi Unicode version

Theorem phivalfi 12255
Description: Finiteness of an expression used to define the Euler 
phi function. (Contributed by Jim Kingon, 28-May-2022.)
Assertion
Ref Expression
phivalfi  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )
Distinct variable group:    x, N

Proof of Theorem phivalfi
StepHypRef Expression
1 1zzd 9315 . . 3  |-  ( N  e.  NN  ->  1  e.  ZZ )
2 nnz 9307 . . 3  |-  ( N  e.  NN  ->  N  e.  ZZ )
31, 2fzfigd 10468 . 2  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
4 elfzelz 10061 . . . . . . 7  |-  ( x  e.  ( 1 ... N )  ->  x  e.  ZZ )
54adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  ->  x  e.  ZZ )
6 simpl 109 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  ->  N  e.  NN )
76nnzd 9409 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  ->  N  e.  ZZ )
85, 7gcdcld 12010 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  ->  ( x  gcd  N )  e.  NN0 )
98nn0zd 9408 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  ->  ( x  gcd  N )  e.  ZZ )
10 1zzd 9315 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  ->  1  e.  ZZ )
11 zdceq 9363 . . . 4  |-  ( ( ( x  gcd  N
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( x  gcd  N )  =  1 )
129, 10, 11syl2anc 411 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  -> DECID 
( x  gcd  N
)  =  1 )
1312ralrimiva 2563 . 2  |-  ( N  e.  NN  ->  A. x  e.  ( 1 ... N
)DECID  ( x  gcd  N
)  =  1 )
143, 13ssfirab 6966 1  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2160   {crab 2472  (class class class)co 5900   Fincfn 6770   1c1 7847   NNcn 8954   ZZcz 9288   ...cfz 10044    gcd cgcd 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-1o 6445  df-er 6563  df-en 6771  df-fin 6773  df-sup 7017  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-n0 9212  df-z 9289  df-uz 9564  df-q 9656  df-rp 9690  df-fz 10045  df-fzo 10179  df-fl 10307  df-mod 10360  df-seqfrec 10485  df-exp 10560  df-cj 10892  df-re 10893  df-im 10894  df-rsqrt 11048  df-abs 11049  df-dvds 11836  df-gcd 11985
This theorem is referenced by:  phival  12256  phicl2  12257  phibnd  12260  phiprmpw  12265
  Copyright terms: Public domain W3C validator