ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmid Unicode version

Theorem lcmid 12597
Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmid  |-  ( M  e.  ZZ  ->  ( M lcm  M )  =  ( abs `  M ) )

Proof of Theorem lcmid
StepHypRef Expression
1 lcm0val 12582 . . . 4  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
21adantr 276 . . 3  |-  ( ( M  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  0
)  =  0 )
3 oveq2 6008 . . . . 5  |-  ( M  =  0  ->  ( M lcm  M )  =  ( M lcm  0 ) )
4 fveq2 5626 . . . . . 6  |-  ( M  =  0  ->  ( abs `  M )  =  ( abs `  0
) )
5 abs0 11564 . . . . . 6  |-  ( abs `  0 )  =  0
64, 5eqtrdi 2278 . . . . 5  |-  ( M  =  0  ->  ( abs `  M )  =  0 )
73, 6eqeq12d 2244 . . . 4  |-  ( M  =  0  ->  (
( M lcm  M )  =  ( abs `  M
)  <->  ( M lcm  0
)  =  0 ) )
87adantl 277 . . 3  |-  ( ( M  e.  ZZ  /\  M  =  0 )  ->  ( ( M lcm 
M )  =  ( abs `  M )  <-> 
( M lcm  0 )  =  0 ) )
92, 8mpbird 167 . 2  |-  ( ( M  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  M
)  =  ( abs `  M ) )
10 df-ne 2401 . . 3  |-  ( M  =/=  0  <->  -.  M  =  0 )
11 lcmcl 12589 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( M lcm  M )  e.  NN0 )
1211nn0cnd 9420 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( M lcm  M )  e.  CC )
1312anidms 397 . . . . 5  |-  ( M  e.  ZZ  ->  ( M lcm  M )  e.  CC )
1413adantr 276 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( M lcm  M )  e.  CC )
15 zabscl 11592 . . . . . 6  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  ZZ )
1615zcnd 9566 . . . . 5  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  CC )
1716adantr 276 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  CC )
18 zcn 9447 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
1918adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  ->  M  e.  CC )
20 simpr 110 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  ->  M  =/=  0 )
2119, 20absne0d 11693 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  =/=  0 )
22 0zd 9454 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
0  e.  ZZ )
23 zapne 9517 . . . . . 6  |-  ( ( ( abs `  M
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( abs `  M
) #  0  <->  ( abs `  M )  =/=  0
) )
2415, 22, 23syl2an2r 597 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( ( abs `  M
) #  0  <->  ( abs `  M )  =/=  0
) )
2521, 24mpbird 167 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
) #  0 )
26 lcmgcd 12595 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M lcm  M
)  x.  ( M  gcd  M ) )  =  ( abs `  ( M  x.  M )
) )
2726anidms 397 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( M lcm  M )  x.  ( M  gcd  M ) )  =  ( abs `  ( M  x.  M ) ) )
28 gcdid 12502 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  gcd  M )  =  ( abs `  M
) )
2928oveq2d 6016 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( M lcm  M )  x.  ( M  gcd  M ) )  =  ( ( M lcm  M )  x.  ( abs `  M
) ) )
3018, 18absmuld 11700 . . . . . 6  |-  ( M  e.  ZZ  ->  ( abs `  ( M  x.  M ) )  =  ( ( abs `  M
)  x.  ( abs `  M ) ) )
3127, 29, 303eqtr3d 2270 . . . . 5  |-  ( M  e.  ZZ  ->  (
( M lcm  M )  x.  ( abs `  M
) )  =  ( ( abs `  M
)  x.  ( abs `  M ) ) )
3231adantr 276 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( ( M lcm  M
)  x.  ( abs `  M ) )  =  ( ( abs `  M
)  x.  ( abs `  M ) ) )
3314, 17, 17, 25, 32mulcanap2ad 8807 . . 3  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( M lcm  M )  =  ( abs `  M
) )
3410, 33sylan2br 288 . 2  |-  ( ( M  e.  ZZ  /\  -.  M  =  0
)  ->  ( M lcm  M )  =  ( abs `  M ) )
35 0z 9453 . . . 4  |-  0  e.  ZZ
36 zdceq 9518 . . . 4  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
3735, 36mpan2 425 . . 3  |-  ( M  e.  ZZ  -> DECID  M  =  0
)
38 exmiddc 841 . . 3  |-  (DECID  M  =  0  ->  ( M  =  0  \/  -.  M  =  0 ) )
3937, 38syl 14 . 2  |-  ( M  e.  ZZ  ->  ( M  =  0  \/  -.  M  =  0
) )
409, 34, 39mpjaodan 803 1  |-  ( M  e.  ZZ  ->  ( M lcm  M )  =  ( abs `  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   0cc0 7995    x. cmul 8000   # cap 8724   ZZcz 9442   abscabs 11503    gcd cgcd 12469   lcm clcm 12577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-lcm 12578
This theorem is referenced by:  lcmgcdeq  12600
  Copyright terms: Public domain W3C validator