ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmid Unicode version

Theorem lcmid 11761
Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmid  |-  ( M  e.  ZZ  ->  ( M lcm  M )  =  ( abs `  M ) )

Proof of Theorem lcmid
StepHypRef Expression
1 lcm0val 11746 . . . 4  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
21adantr 274 . . 3  |-  ( ( M  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  0
)  =  0 )
3 oveq2 5782 . . . . 5  |-  ( M  =  0  ->  ( M lcm  M )  =  ( M lcm  0 ) )
4 fveq2 5421 . . . . . 6  |-  ( M  =  0  ->  ( abs `  M )  =  ( abs `  0
) )
5 abs0 10830 . . . . . 6  |-  ( abs `  0 )  =  0
64, 5syl6eq 2188 . . . . 5  |-  ( M  =  0  ->  ( abs `  M )  =  0 )
73, 6eqeq12d 2154 . . . 4  |-  ( M  =  0  ->  (
( M lcm  M )  =  ( abs `  M
)  <->  ( M lcm  0
)  =  0 ) )
87adantl 275 . . 3  |-  ( ( M  e.  ZZ  /\  M  =  0 )  ->  ( ( M lcm 
M )  =  ( abs `  M )  <-> 
( M lcm  0 )  =  0 ) )
92, 8mpbird 166 . 2  |-  ( ( M  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  M
)  =  ( abs `  M ) )
10 df-ne 2309 . . 3  |-  ( M  =/=  0  <->  -.  M  =  0 )
11 lcmcl 11753 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( M lcm  M )  e.  NN0 )
1211nn0cnd 9032 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( M lcm  M )  e.  CC )
1312anidms 394 . . . . 5  |-  ( M  e.  ZZ  ->  ( M lcm  M )  e.  CC )
1413adantr 274 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( M lcm  M )  e.  CC )
15 zabscl 10858 . . . . . 6  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  ZZ )
1615zcnd 9174 . . . . 5  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  CC )
1716adantr 274 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  CC )
18 zcn 9059 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
1918adantr 274 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  ->  M  e.  CC )
20 simpr 109 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  ->  M  =/=  0 )
2119, 20absne0d 10959 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  =/=  0 )
22 0zd 9066 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
0  e.  ZZ )
23 zapne 9125 . . . . . 6  |-  ( ( ( abs `  M
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( abs `  M
) #  0  <->  ( abs `  M )  =/=  0
) )
2415, 22, 23syl2an2r 584 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( ( abs `  M
) #  0  <->  ( abs `  M )  =/=  0
) )
2521, 24mpbird 166 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
) #  0 )
26 lcmgcd 11759 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M lcm  M
)  x.  ( M  gcd  M ) )  =  ( abs `  ( M  x.  M )
) )
2726anidms 394 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( M lcm  M )  x.  ( M  gcd  M ) )  =  ( abs `  ( M  x.  M ) ) )
28 gcdid 11674 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  gcd  M )  =  ( abs `  M
) )
2928oveq2d 5790 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( M lcm  M )  x.  ( M  gcd  M ) )  =  ( ( M lcm  M )  x.  ( abs `  M
) ) )
3018, 18absmuld 10966 . . . . . 6  |-  ( M  e.  ZZ  ->  ( abs `  ( M  x.  M ) )  =  ( ( abs `  M
)  x.  ( abs `  M ) ) )
3127, 29, 303eqtr3d 2180 . . . . 5  |-  ( M  e.  ZZ  ->  (
( M lcm  M )  x.  ( abs `  M
) )  =  ( ( abs `  M
)  x.  ( abs `  M ) ) )
3231adantr 274 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( ( M lcm  M
)  x.  ( abs `  M ) )  =  ( ( abs `  M
)  x.  ( abs `  M ) ) )
3314, 17, 17, 25, 32mulcanap2ad 8425 . . 3  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( M lcm  M )  =  ( abs `  M
) )
3410, 33sylan2br 286 . 2  |-  ( ( M  e.  ZZ  /\  -.  M  =  0
)  ->  ( M lcm  M )  =  ( abs `  M ) )
35 0z 9065 . . . 4  |-  0  e.  ZZ
36 zdceq 9126 . . . 4  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
3735, 36mpan2 421 . . 3  |-  ( M  e.  ZZ  -> DECID  M  =  0
)
38 exmiddc 821 . . 3  |-  (DECID  M  =  0  ->  ( M  =  0  \/  -.  M  =  0 ) )
3937, 38syl 14 . 2  |-  ( M  e.  ZZ  ->  ( M  =  0  \/  -.  M  =  0
) )
409, 34, 39mpjaodan 787 1  |-  ( M  e.  ZZ  ->  ( M lcm  M )  =  ( abs `  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620    x. cmul 7625   # cap 8343   ZZcz 9054   abscabs 10769    gcd cgcd 11635   lcm clcm 11741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636  df-lcm 11742
This theorem is referenced by:  lcmgcdeq  11764
  Copyright terms: Public domain W3C validator