| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > usgrstrrepeen | GIF version | ||
| Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (𝜑 → 𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑 → 𝐺 ∈ V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| usgrstrrepe.v | ⊢ 𝑉 = (Base‘𝐺) |
| usgrstrrepe.i | ⊢ 𝐼 = (.ef‘ndx) |
| usgrstrrepe.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
| usgrstrrepe.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) |
| usgrstrrepe.w | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| usgrstrrepeen.e | ⊢ (𝜑 → 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| Ref | Expression |
|---|---|
| usgrstrrepeen | ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrstrrepeen.e | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) | |
| 2 | usgrstrrepe.i | . . . . . . . . 9 ⊢ 𝐼 = (.ef‘ndx) | |
| 3 | usgrstrrepe.s | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
| 4 | usgrstrrepe.b | . . . . . . . . 9 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) | |
| 5 | usgrstrrepe.w | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 6 | 2, 3, 4, 5 | setsvtx 15817 | . . . . . . . 8 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘𝐺)) |
| 7 | usgrstrrepe.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐺) | |
| 8 | 6, 7 | eqtr4di 2260 | . . . . . . 7 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝑉) |
| 9 | 8 | pweqd 3634 | . . . . . 6 ⊢ (𝜑 → 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝒫 𝑉) |
| 10 | 9 | rabeqdv 2773 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 11 | f1eq3 5504 | . . . . 5 ⊢ ({𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → (𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o} ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) | |
| 12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o} ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 13 | 1, 12 | mpbird 167 | . . 3 ⊢ (𝜑 → 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o}) |
| 14 | 2, 3, 4, 5 | setsiedg 15818 | . . . 4 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝐸) |
| 15 | 14 | dmeqd 4902 | . . . 4 ⊢ (𝜑 → dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = dom 𝐸) |
| 16 | eqidd 2210 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o}) | |
| 17 | 14, 15, 16 | f1eq123d 5540 | . . 3 ⊢ (𝜑 → ((iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o} ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o})) |
| 18 | 13, 17 | mpbird 167 | . 2 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o}) |
| 19 | structex 13010 | . . . . 5 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | |
| 20 | 3, 19 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 21 | edgfndxnn 15774 | . . . . . 6 ⊢ (.ef‘ndx) ∈ ℕ | |
| 22 | 2, 21 | eqeltri 2282 | . . . . 5 ⊢ 𝐼 ∈ ℕ |
| 23 | 22 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 24 | setsex 13030 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐼 ∈ ℕ ∧ 𝐸 ∈ 𝑊) → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ V) | |
| 25 | 20, 23, 5, 24 | syl3anc 1252 | . . 3 ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ V) |
| 26 | eqid 2209 | . . . 4 ⊢ (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) | |
| 27 | eqid 2209 | . . . 4 ⊢ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) | |
| 28 | 26, 27 | isusgren 15921 | . . 3 ⊢ ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ V → ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ USGraph ↔ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o})) |
| 29 | 25, 28 | syl 14 | . 2 ⊢ (𝜑 → ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ USGraph ↔ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ 𝑥 ≈ 2o})) |
| 30 | 18, 29 | mpbird 167 | 1 ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ USGraph) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 {crab 2492 Vcvv 2779 𝒫 cpw 3629 〈cop 3649 class class class wbr 4062 dom cdm 4696 –1-1→wf1 5291 ‘cfv 5294 (class class class)co 5974 2oc2o 6526 ≈ cen 6855 ℕcn 9078 Struct cstr 12994 ndxcnx 12995 sSet csts 12996 Basecbs 12998 .efcedgf 15770 Vtxcvtx 15778 iEdgciedg 15779 USGraphcusgr 15917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-1o 6532 df-2o 6533 df-en 6858 df-dom 6859 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-edgf 15771 df-vtx 15780 df-iedg 15781 df-usgren 15919 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |