ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgrstrrepeen GIF version

Theorem usgrstrrepeen 15994
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (𝜑𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑𝐺 ∈ V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
usgrstrrepe.v 𝑉 = (Base‘𝐺)
usgrstrrepe.i 𝐼 = (.ef‘ndx)
usgrstrrepe.s (𝜑𝐺 Struct 𝑋)
usgrstrrepe.b (𝜑 → (Base‘ndx) ∈ dom 𝐺)
usgrstrrepe.w (𝜑𝐸𝑊)
usgrstrrepeen.e (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o})
Assertion
Ref Expression
usgrstrrepeen (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐸   𝑥,𝐼   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem usgrstrrepeen
StepHypRef Expression
1 usgrstrrepeen.e . . . 4 (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o})
2 usgrstrrepe.i . . . . . . . . 9 𝐼 = (.ef‘ndx)
3 usgrstrrepe.s . . . . . . . . 9 (𝜑𝐺 Struct 𝑋)
4 usgrstrrepe.b . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ dom 𝐺)
5 usgrstrrepe.w . . . . . . . . 9 (𝜑𝐸𝑊)
62, 3, 4, 5setsvtx 15817 . . . . . . . 8 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘𝐺))
7 usgrstrrepe.v . . . . . . . 8 𝑉 = (Base‘𝐺)
86, 7eqtr4di 2260 . . . . . . 7 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝑉)
98pweqd 3634 . . . . . 6 (𝜑 → 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝒫 𝑉)
109rabeqdv 2773 . . . . 5 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o})
11 f1eq3 5504 . . . . 5 ({𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o} → (𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}))
1210, 11syl 14 . . . 4 (𝜑 → (𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}))
131, 12mpbird 167 . . 3 (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o})
142, 3, 4, 5setsiedg 15818 . . . 4 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)
1514dmeqd 4902 . . . 4 (𝜑 → dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = dom 𝐸)
16 eqidd 2210 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o})
1714, 15, 16f1eq123d 5540 . . 3 (𝜑 → ((iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o}))
1813, 17mpbird 167 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o})
19 structex 13010 . . . . 5 (𝐺 Struct 𝑋𝐺 ∈ V)
203, 19syl 14 . . . 4 (𝜑𝐺 ∈ V)
21 edgfndxnn 15774 . . . . . 6 (.ef‘ndx) ∈ ℕ
222, 21eqeltri 2282 . . . . 5 𝐼 ∈ ℕ
2322a1i 9 . . . 4 (𝜑𝐼 ∈ ℕ)
24 setsex 13030 . . . 4 ((𝐺 ∈ V ∧ 𝐼 ∈ ℕ ∧ 𝐸𝑊) → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V)
2520, 23, 5, 24syl3anc 1252 . . 3 (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V)
26 eqid 2209 . . . 4 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
27 eqid 2209 . . . 4 (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
2826, 27isusgren 15921 . . 3 ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o}))
2925, 28syl 14 . 2 (𝜑 → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ 𝑥 ≈ 2o}))
3018, 29mpbird 167 1 (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wcel 2180  {crab 2492  Vcvv 2779  𝒫 cpw 3629  cop 3649   class class class wbr 4062  dom cdm 4696  1-1wf1 5291  cfv 5294  (class class class)co 5974  2oc2o 6526  cen 6855  cn 9078   Struct cstr 12994  ndxcnx 12995   sSet csts 12996  Basecbs 12998  .efcedgf 15770  Vtxcvtx 15778  iEdgciedg 15779  USGraphcusgr 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083  ax-pre-mulgt0 8084
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-1o 6532  df-2o 6533  df-en 6858  df-dom 6859  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-usgren 15919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator