ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltmininf Unicode version

Theorem xrltmininf 11776
Description: Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
Assertion
Ref Expression
xrltmininf  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <  B  /\  A  < 
C ) ) )

Proof of Theorem xrltmininf
StepHypRef Expression
1 xrminmax 11771 . . . 4  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
213adant1 1039 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
32breq2d 4094 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  A  <  -e sup ( { 
-e B ,  -e C } ,  RR* ,  <  ) ) )
4 simp2 1022 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
54xnegcld 10047 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
B  e.  RR* )
6 simp3 1023 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  e.  RR* )
76xnegcld 10047 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
C  e.  RR* )
8 simp1 1021 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
98xnegcld 10047 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
A  e.  RR* )
10 xrmaxltsup 11764 . . . 4  |-  ( ( 
-e B  e. 
RR*  /\  -e C  e.  RR*  /\  -e
A  e.  RR* )  ->  ( sup ( { 
-e B ,  -e C } ,  RR* ,  <  )  <  -e A  <->  (  -e
B  <  -e A  /\  -e C  <  -e A ) ) )
115, 7, 9, 10syl3anc 1271 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A  <->  (  -e
B  <  -e A  /\  -e C  <  -e A ) ) )
12 xrmaxcl 11758 . . . . . . 7  |-  ( ( 
-e B  e. 
RR*  /\  -e C  e.  RR* )  ->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e.  RR* )
135, 7, 12syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e.  RR* )
1413xnegcld 10047 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  e.  RR* )
15 xltneg 10028 . . . . 5  |-  ( ( A  e.  RR*  /\  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  e.  RR* )  ->  ( A  <  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  -e  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A ) )
168, 14, 15syl2anc 411 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  -e  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A ) )
17 xnegneg 10025 . . . . . 6  |-  ( sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  e.  RR*  -> 
-e  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  =  sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
1813, 17syl 14 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e  -e sup ( { 
-e B ,  -e C } ,  RR* ,  <  )  =  sup ( {  -e
B ,  -e
C } ,  RR* ,  <  ) )
1918breq1d 4092 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (  -e  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A  <->  sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A ) )
2016, 19bitrd 188 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <  -e A ) )
21 xltneg 10028 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  -e B  <  -e A ) )
22213adant3 1041 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  B  <->  -e B  <  -e A ) )
23 xltneg 10028 . . . . 5  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A  <  C  <->  -e C  <  -e A ) )
24233adant2 1040 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  C  <->  -e C  <  -e A ) )
2522, 24anbi12d 473 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  A  <  C )  <-> 
(  -e B  <  -e A  /\  -e C  <  -e
A ) ) )
2611, 20, 253bitr4d 220 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  ( A  <  B  /\  A  < 
C ) ) )
273, 26bitrd 188 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <  B  /\  A  < 
C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cpr 3667   class class class wbr 4082   supcsup 7145  infcinf 7146   RR*cxr 8176    < clt 8177    -ecxne 9961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-xneg 9964  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505
This theorem is referenced by:  xrminrpcl  11780  iooinsup  11783  blininf  15092  bdxmet  15169  bdmopn  15172
  Copyright terms: Public domain W3C validator