ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltmininf Unicode version

Theorem xrltmininf 11297
Description: Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
Assertion
Ref Expression
xrltmininf  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <  B  /\  A  < 
C ) ) )

Proof of Theorem xrltmininf
StepHypRef Expression
1 xrminmax 11292 . . . 4  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
213adant1 1017 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
32breq2d 4030 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  A  <  -e sup ( { 
-e B ,  -e C } ,  RR* ,  <  ) ) )
4 simp2 1000 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
54xnegcld 9874 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
B  e.  RR* )
6 simp3 1001 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  e.  RR* )
76xnegcld 9874 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
C  e.  RR* )
8 simp1 999 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
98xnegcld 9874 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
A  e.  RR* )
10 xrmaxltsup 11285 . . . 4  |-  ( ( 
-e B  e. 
RR*  /\  -e C  e.  RR*  /\  -e
A  e.  RR* )  ->  ( sup ( { 
-e B ,  -e C } ,  RR* ,  <  )  <  -e A  <->  (  -e
B  <  -e A  /\  -e C  <  -e A ) ) )
115, 7, 9, 10syl3anc 1249 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A  <->  (  -e
B  <  -e A  /\  -e C  <  -e A ) ) )
12 xrmaxcl 11279 . . . . . . 7  |-  ( ( 
-e B  e. 
RR*  /\  -e C  e.  RR* )  ->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e.  RR* )
135, 7, 12syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e.  RR* )
1413xnegcld 9874 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  e.  RR* )
15 xltneg 9855 . . . . 5  |-  ( ( A  e.  RR*  /\  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  e.  RR* )  ->  ( A  <  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  -e  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A ) )
168, 14, 15syl2anc 411 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  -e  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A ) )
17 xnegneg 9852 . . . . . 6  |-  ( sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  e.  RR*  -> 
-e  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  =  sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
1813, 17syl 14 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e  -e sup ( { 
-e B ,  -e C } ,  RR* ,  <  )  =  sup ( {  -e
B ,  -e
C } ,  RR* ,  <  ) )
1918breq1d 4028 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (  -e  -e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A  <->  sup ( {  -e
B ,  -e
C } ,  RR* ,  <  )  <  -e
A ) )
2016, 19bitrd 188 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <  -e A ) )
21 xltneg 9855 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  -e B  <  -e A ) )
22213adant3 1019 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  B  <->  -e B  <  -e A ) )
23 xltneg 9855 . . . . 5  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A  <  C  <->  -e C  <  -e A ) )
24233adant2 1018 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  C  <->  -e C  <  -e A ) )
2522, 24anbi12d 473 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  A  <  C )  <-> 
(  -e B  <  -e A  /\  -e C  <  -e
A ) ) )
2611, 20, 253bitr4d 220 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  )  <->  ( A  <  B  /\  A  < 
C ) ) )
273, 26bitrd 188 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <  B  /\  A  < 
C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   {cpr 3608   class class class wbr 4018   supcsup 7000  infcinf 7001   RR*cxr 8010    < clt 8011    -ecxne 9788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948  ax-arch 7949  ax-caucvg 7950
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-sup 7002  df-inf 7003  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558  df-div 8649  df-inn 8939  df-2 8997  df-3 8998  df-4 8999  df-n0 9196  df-z 9273  df-uz 9548  df-rp 9673  df-xneg 9791  df-seqfrec 10465  df-exp 10539  df-cj 10870  df-re 10871  df-im 10872  df-rsqrt 11026  df-abs 11027
This theorem is referenced by:  xrminrpcl  11301  iooinsup  11304  blininf  14327  bdxmet  14404  bdmopn  14407
  Copyright terms: Public domain W3C validator