ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znzrh2 Unicode version

Theorem znzrh2 14134
Description: The  ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znzrh2.s  |-  S  =  (RSpan ` ring )
znzrh2.r  |-  .~  =  (ring ~QG  ( S `
 { N }
) )
znzrh2.y  |-  Y  =  (ℤ/n `  N )
znzrh2.2  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
znzrh2  |-  ( N  e.  NN0  ->  L  =  ( x  e.  ZZ  |->  [ x ]  .~  ) )
Distinct variable groups:    x, N    x,  .~    x, S
Allowed substitution hints:    L( x)    Y( x)

Proof of Theorem znzrh2
StepHypRef Expression
1 znzrh2.2 . 2  |-  L  =  ( ZRHom `  Y
)
2 zringring 14081 . . . . 5  |-ring  e.  Ring
3 nn0z 9337 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
4 znzrh2.s . . . . . . 7  |-  S  =  (RSpan ` ring )
54znlidl 14122 . . . . . 6  |-  ( N  e.  ZZ  ->  ( S `  { N } )  e.  (LIdeal ` ring ) )
63, 5syl 14 . . . . 5  |-  ( N  e.  NN0  ->  ( S `
 { N }
)  e.  (LIdeal ` ring )
)
7 znzrh2.r . . . . . . 7  |-  .~  =  (ring ~QG  ( S `
 { N }
) )
87oveq2i 5929 . . . . . 6  |-  (ring  /.s  .~  )  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
9 zringcrng 14080 . . . . . . 7  |-ring  e.  CRing
10 eqid 2193 . . . . . . . 8  |-  (LIdeal ` ring )  =  (LIdeal ` ring )
1110crng2idl 14027 . . . . . . 7  |-  (ring  e.  CRing  -> 
(LIdeal ` ring )  =  (2Ideal ` ring ) )
129, 11ax-mp 5 . . . . . 6  |-  (LIdeal ` ring )  =  (2Ideal ` ring )
13 zringbas 14084 . . . . . 6  |-  ZZ  =  ( Base ` ring )
14 eceq2 6624 . . . . . . . 8  |-  (  .~  =  (ring ~QG  ( S `  { N } ) )  ->  [ x ]  .~  =  [ x ] (ring ~QG  ( S `
 { N }
) ) )
157, 14ax-mp 5 . . . . . . 7  |-  [ x ]  .~  =  [ x ] (ring ~QG  ( S `  { N } ) )
1615mpteq2i 4116 . . . . . 6  |-  ( x  e.  ZZ  |->  [ x ]  .~  )  =  ( x  e.  ZZ  |->  [ x ] (ring ~QG  ( S `  { N } ) ) )
178, 12, 13, 16qusrhm 14024 . . . . 5  |-  ( (ring  e. 
Ring  /\  ( S `  { N } )  e.  (LIdeal ` ring ) )  ->  (
x  e.  ZZ  |->  [ x ]  .~  )  e.  (ring RingHom  (ring  /.s  .~  ) ) )
182, 6, 17sylancr 414 . . . 4  |-  ( N  e.  NN0  ->  ( x  e.  ZZ  |->  [ x ]  .~  )  e.  (ring RingHom  (ring  /.s  .~  )
) )
194, 8zncrng2 14123 . . . . 5  |-  ( N  e.  ZZ  ->  (ring  /.s  .~  )  e.  CRing )
20 crngring 13504 . . . . 5  |-  ( (ring  /.s  .~  )  e.  CRing  ->  (ring  /.s 
.~  )  e.  Ring )
21 eqid 2193 . . . . . 6  |-  ( ZRHom `  (ring 
/.s  .~  ) )  =  ( ZRHom `  (ring  /.s 
.~  ) )
2221zrhrhmb 14110 . . . . 5  |-  ( (ring  /.s  .~  )  e.  Ring  ->  ( (
x  e.  ZZ  |->  [ x ]  .~  )  e.  (ring RingHom  (ring  /.s  .~  ) )  <->  ( x  e.  ZZ  |->  [ x ]  .~  )  =  ( ZRHom `  (ring 
/.s  .~  ) ) ) )
233, 19, 20, 224syl 18 . . . 4  |-  ( N  e.  NN0  ->  ( ( x  e.  ZZ  |->  [ x ]  .~  )  e.  (ring RingHom  (ring  /.s  .~  ) )  <->  ( x  e.  ZZ  |->  [ x ]  .~  )  =  ( ZRHom `  (ring 
/.s  .~  ) ) ) )
2418, 23mpbid 147 . . 3  |-  ( N  e.  NN0  ->  ( x  e.  ZZ  |->  [ x ]  .~  )  =  ( ZRHom `  (ring  /.s 
.~  ) ) )
25 znzrh2.y . . . 4  |-  Y  =  (ℤ/n `  N )
264, 8, 25znzrh 14131 . . 3  |-  ( N  e.  NN0  ->  ( ZRHom `  (ring 
/.s  .~  ) )  =  ( ZRHom `  Y )
)
2724, 26eqtr2d 2227 . 2  |-  ( N  e.  NN0  ->  ( ZRHom `  Y )  =  ( x  e.  ZZ  |->  [ x ]  .~  )
)
281, 27eqtrid 2238 1  |-  ( N  e.  NN0  ->  L  =  ( x  e.  ZZ  |->  [ x ]  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   {csn 3618    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   [cec 6585   NN0cn0 9240   ZZcz 9317    /.s cqus 12883   ~QG cqg 13239   Ringcrg 13492   CRingccrg 13493   RingHom crh 13646  LIdealclidl 13963  RSpancrsp 13964  2Idealc2idl 13995  ℤringczring 14078   ZRHomczrh 14099  ℤ/nczn 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-recs 6358  df-frec 6444  df-er 6587  df-ec 6589  df-qs 6593  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-ip 12713  df-ple 12715  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mulg 13190  df-subg 13240  df-nsg 13241  df-eqg 13242  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-rhm 13648  df-subrg 13715  df-lmod 13785  df-lssm 13849  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-rsp 13966  df-2idl 13996  df-icnfld 14048  df-zring 14079  df-zrh 14102  df-zn 14104
This theorem is referenced by:  znzrhval  14135  znzrhfo  14136
  Copyright terms: Public domain W3C validator