![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lem1d | GIF version |
Description: A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
lem1d | ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | lem1 8308 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 class class class wbr 3845 (class class class)co 5652 ℝcr 7349 1c1 7351 ≤ cle 7523 − cmin 7653 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-addcom 7445 ax-addass 7447 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-0id 7453 ax-rnegex 7454 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-lttrn 7459 ax-pre-ltadd 7461 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-iota 4980 df-fun 5017 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 |
This theorem is referenced by: fzossrbm1 9584 iseqf1olemqcl 9915 iseqf1olemnab 9917 iseqf1olemab 9918 seq3f1olemqsumkj 9927 seq3f1olemqsum 9929 iseqcoll 10247 |
Copyright terms: Public domain | W3C validator |