| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltm1d | GIF version | ||
| Description: A number minus 1 is less than itself. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltm1d | ⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltm1 8932 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4048 (class class class)co 5954 ℝcr 7937 1c1 7939 < clt 8120 − cmin 8256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-sub 8258 df-neg 8259 |
| This theorem is referenced by: suprzclex 9484 fzsuc2 10214 fzm1 10235 m1modnnsub1 10528 uzsinds 10602 iseqf1olemab 10660 zfz1isolemiso 10997 fsumm1 11777 isumsplit 11852 bitsfzolem 12315 fldivp1 12721 4sqlem12 12775 hovera 15169 ivthdichlem 15173 wilthlem1 15502 lgsval2lem 15537 gausslemma2dlem0c 15578 lgsquadlem1 15604 lgsquadlem2 15605 |
| Copyright terms: Public domain | W3C validator |