ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rlmfn GIF version

Theorem rlmfn 13766
Description: ringLMod is a function. (Contributed by Stefan O'Rear, 6-Dec-2014.)
Assertion
Ref Expression
rlmfn ringLMod Fn V

Proof of Theorem rlmfn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2190 . . . 4 (⊤ → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑎)‘(Base‘𝑎)))
2 ssidd 3191 . . . 4 (⊤ → (Base‘𝑎) ⊆ (Base‘𝑎))
3 vex 2755 . . . . 5 𝑎 ∈ V
43a1i 9 . . . 4 (⊤ → 𝑎 ∈ V)
51, 2, 4sraex 13759 . . 3 (⊤ → ((subringAlg ‘𝑎)‘(Base‘𝑎)) ∈ V)
65mptru 1373 . 2 ((subringAlg ‘𝑎)‘(Base‘𝑎)) ∈ V
7 df-rgmod 13749 . 2 ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎)))
86, 7fnmpti 5363 1 ringLMod Fn V
Colors of variables: wff set class
Syntax hints:  wtru 1365  wcel 2160  Vcvv 2752   Fn wfn 5230  cfv 5235  Basecbs 12511  subringAlg csra 13746  ringLModcrglmod 13747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-6 9011  df-7 9012  df-8 9013  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-mulr 12600  df-sca 12602  df-vsca 12603  df-ip 12604  df-sra 13748  df-rgmod 13749
This theorem is referenced by:  rlmsubg  13771  rlmvnegg  13778  ixpsnbasval  13779  lidlvalg  13784  rspvalg  13785  lidlex  13786  rspex  13787  lidlmex  13788  lidlss  13789  lidlrsppropdg  13808
  Copyright terms: Public domain W3C validator