| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftcan2 | GIF version | ||
| Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| shftfval.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| shftcan2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negneg 8337 | . . . . 5 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → --𝐴 = 𝐴) |
| 3 | 2 | oveq2d 5972 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴) shift --𝐴) = ((𝐹 shift -𝐴) shift 𝐴)) |
| 4 | 3 | fveq1d 5590 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift --𝐴)‘𝐵) = (((𝐹 shift -𝐴) shift 𝐴)‘𝐵)) |
| 5 | negcl 8287 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 6 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
| 7 | 6 | shftcan1 11215 | . . 3 ⊢ ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift --𝐴)‘𝐵) = (𝐹‘𝐵)) |
| 8 | 5, 7 | sylan 283 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift --𝐴)‘𝐵) = (𝐹‘𝐵)) |
| 9 | 4, 8 | eqtr3d 2241 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ‘cfv 5279 (class class class)co 5956 ℂcc 7938 -cneg 8259 shift cshi 11195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-sub 8260 df-neg 8261 df-shft 11196 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |