ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftcan2 GIF version

Theorem shftcan2 10728
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftcan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹𝐵))

Proof of Theorem shftcan2
StepHypRef Expression
1 negneg 8119 . . . . 5 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
21adantr 274 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → --𝐴 = 𝐴)
32oveq2d 5837 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴) shift --𝐴) = ((𝐹 shift -𝐴) shift 𝐴))
43fveq1d 5469 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift --𝐴)‘𝐵) = (((𝐹 shift -𝐴) shift 𝐴)‘𝐵))
5 negcl 8069 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
6 shftfval.1 . . . 4 𝐹 ∈ V
76shftcan1 10727 . . 3 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift --𝐴)‘𝐵) = (𝐹𝐵))
85, 7sylan 281 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift --𝐴)‘𝐵) = (𝐹𝐵))
94, 8eqtr3d 2192 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  Vcvv 2712  cfv 5169  (class class class)co 5821  cc 7724  -cneg 8041   shift cshi 10707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-sub 8042  df-neg 8043  df-shft 10708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator