ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftidt GIF version

Theorem shftidt 10737
Description: Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftidt (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹𝐴))

Proof of Theorem shftidt
StepHypRef Expression
1 shftfval.1 . . . 4 𝐹 ∈ V
21shftidt2 10736 . . 3 (𝐹 shift 0) = (𝐹 ↾ ℂ)
32fveq1i 5470 . 2 ((𝐹 shift 0)‘𝐴) = ((𝐹 ↾ ℂ)‘𝐴)
4 fvres 5493 . 2 (𝐴 ∈ ℂ → ((𝐹 ↾ ℂ)‘𝐴) = (𝐹𝐴))
53, 4syl5eq 2202 1 (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wcel 2128  Vcvv 2712  cres 4589  cfv 5171  (class class class)co 5825  cc 7731  0cc0 7733   shift cshi 10718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-resscn 7825  ax-1cn 7826  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-addass 7835  ax-distr 7837  ax-i2m1 7838  ax-0id 7841  ax-rnegex 7842  ax-cnre 7844
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-sub 8049  df-shft 10719
This theorem is referenced by:  shftcan1  10738
  Copyright terms: Public domain W3C validator