ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval5 GIF version

Theorem shftval5 11210
Description: Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftval5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹𝐵))

Proof of Theorem shftval5
StepHypRef Expression
1 simpr 110 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
2 addcl 8065 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) ∈ ℂ)
3 shftfval.1 . . . . 5 𝐹 ∈ V
43shftval 11206 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 + 𝐴) ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹‘((𝐵 + 𝐴) − 𝐴)))
51, 2, 4syl2anc 411 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹‘((𝐵 + 𝐴) − 𝐴)))
6 pncan 8293 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐴) = 𝐵)
76fveq2d 5592 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐹‘((𝐵 + 𝐴) − 𝐴)) = (𝐹𝐵))
85, 7eqtrd 2239 . 2 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹𝐵))
98ancoms 268 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  cfv 5279  (class class class)co 5956  cc 7938   + caddc 7943  cmin 8258   shift cshi 11195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-resscn 8032  ax-1cn 8033  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-sub 8260  df-shft 11196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator