Proof of Theorem structiedg0val
| Step | Hyp | Ref
| Expression |
| 1 | | structvtxvallem.g |
. . . . 5
⊢ 𝐺 = {〈(Base‘ndx),
𝑉〉, 〈𝑆, 𝐸〉} |
| 2 | | basendxnn 12830 |
. . . . . . 7
⊢
(Base‘ndx) ∈ ℕ |
| 3 | | simpl 109 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝑉 ∈ 𝑋) |
| 4 | | opexg 4271 |
. . . . . . 7
⊢
(((Base‘ndx) ∈ ℕ ∧ 𝑉 ∈ 𝑋) → 〈(Base‘ndx), 𝑉〉 ∈
V) |
| 5 | 2, 3, 4 | sylancr 414 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈(Base‘ndx), 𝑉〉 ∈
V) |
| 6 | | structvtxvallem.s |
. . . . . . 7
⊢ 𝑆 ∈ ℕ |
| 7 | | simpr 110 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐸 ∈ 𝑌) |
| 8 | | opexg 4271 |
. . . . . . 7
⊢ ((𝑆 ∈ ℕ ∧ 𝐸 ∈ 𝑌) → 〈𝑆, 𝐸〉 ∈ V) |
| 9 | 6, 7, 8 | sylancr 414 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑆, 𝐸〉 ∈ V) |
| 10 | | prexg 4254 |
. . . . . 6
⊢
((〈(Base‘ndx), 𝑉〉 ∈ V ∧ 〈𝑆, 𝐸〉 ∈ V) →
{〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V) |
| 11 | 5, 9, 10 | syl2anc 411 |
. . . . 5
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V) |
| 12 | 1, 11 | eqeltrid 2291 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ∈ V) |
| 13 | | structvtxvallem.b |
. . . . . 6
⊢
(Base‘ndx) < 𝑆 |
| 14 | 1, 13, 6 | 2strstrndx 12892 |
. . . . 5
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 Struct 〈(Base‘ndx), 𝑆〉) |
| 15 | | structn0fun 12787 |
. . . . 5
⊢ (𝐺 Struct 〈(Base‘ndx),
𝑆〉 → Fun (𝐺 ∖
{∅})) |
| 16 | 14, 15 | syl 14 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → Fun (𝐺 ∖ {∅})) |
| 17 | 6, 13, 1 | struct2slots2dom 15577 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2o ≼ dom 𝐺) |
| 18 | | funiedgdm2domval 15569 |
. . . 4
⊢ ((𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅}) ∧
2o ≼ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) |
| 19 | 12, 16, 17, 18 | syl3anc 1249 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (.ef‘𝐺)) |
| 20 | 19 | 3adant3 1019 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) →
(iEdg‘𝐺) =
(.ef‘𝐺)) |
| 21 | | edgfndxid 15550 |
. . . 4
⊢ (𝐺 ∈ V →
(.ef‘𝐺) = (𝐺‘(.ef‘ndx))) |
| 22 | 12, 21 | syl 14 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) |
| 23 | 22 | 3adant3 1019 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) →
(.ef‘𝐺) = (𝐺‘(.ef‘ndx))) |
| 24 | | edgfndxnn 15549 |
. . . 4
⊢
(.ef‘ndx) ∈ ℕ |
| 25 | 24 | elexi 2783 |
. . 3
⊢
(.ef‘ndx) ∈ V |
| 26 | | basendxnedgfndx 15552 |
. . . . . . . 8
⊢
(Base‘ndx) ≠ (.ef‘ndx) |
| 27 | 26 | nesymi 2421 |
. . . . . . 7
⊢ ¬
(.ef‘ndx) = (Base‘ndx) |
| 28 | 27 | a1i 9 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬
(.ef‘ndx) = (Base‘ndx)) |
| 29 | | neneq 2397 |
. . . . . . . 8
⊢ (𝑆 ≠ (.ef‘ndx) →
¬ 𝑆 =
(.ef‘ndx)) |
| 30 | 29 | neqcomd 2209 |
. . . . . . 7
⊢ (𝑆 ≠ (.ef‘ndx) →
¬ (.ef‘ndx) = 𝑆) |
| 31 | 30 | 3ad2ant3 1022 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬
(.ef‘ndx) = 𝑆) |
| 32 | | ioran 753 |
. . . . . 6
⊢ (¬
((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆) ↔ (¬ (.ef‘ndx) =
(Base‘ndx) ∧ ¬ (.ef‘ndx) = 𝑆)) |
| 33 | 28, 31, 32 | sylanbrc 417 |
. . . . 5
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬
((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆)) |
| 34 | 25 | elpr 3653 |
. . . . 5
⊢
((.ef‘ndx) ∈ {(Base‘ndx), 𝑆} ↔ ((.ef‘ndx) = (Base‘ndx)
∨ (.ef‘ndx) = 𝑆)) |
| 35 | 33, 34 | sylnibr 678 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬
(.ef‘ndx) ∈ {(Base‘ndx), 𝑆}) |
| 36 | 1 | dmeqi 4878 |
. . . . 5
⊢ dom 𝐺 = dom {〈(Base‘ndx),
𝑉〉, 〈𝑆, 𝐸〉} |
| 37 | | dmpropg 5154 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → dom {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} = {(Base‘ndx), 𝑆}) |
| 38 | 37 | 3adant3 1019 |
. . . . 5
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → dom
{〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} = {(Base‘ndx), 𝑆}) |
| 39 | 36, 38 | eqtrid 2249 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → dom 𝐺 = {(Base‘ndx), 𝑆}) |
| 40 | 35, 39 | neleqtrrd 2303 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬
(.ef‘ndx) ∈ dom 𝐺) |
| 41 | | ndmfvg 5606 |
. . 3
⊢
(((.ef‘ndx) ∈ V ∧ ¬ (.ef‘ndx) ∈ dom 𝐺) → (𝐺‘(.ef‘ndx)) =
∅) |
| 42 | 25, 40, 41 | sylancr 414 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (𝐺‘(.ef‘ndx)) =
∅) |
| 43 | 20, 23, 42 | 3eqtrd 2241 |
1
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) →
(iEdg‘𝐺) =
∅) |