| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mopnm | GIF version | ||
| Description: The base set of a metric space is open. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| mopnm | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | 1 | mopntopon 15076 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | toponmax 14658 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ‘cfv 5291 ∞Metcxmet 14459 MetOpencmopn 14464 TopOnctopon 14643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4176 ax-sep 4179 ax-nul 4187 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-iinf 4655 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-mulrcl 8061 ax-addcom 8062 ax-mulcom 8063 ax-addass 8064 ax-mulass 8065 ax-distr 8066 ax-i2m1 8067 ax-0lt1 8068 ax-1rid 8069 ax-0id 8070 ax-rnegex 8071 ax-precex 8072 ax-cnre 8073 ax-pre-ltirr 8074 ax-pre-ltwlin 8075 ax-pre-lttrn 8076 ax-pre-apti 8077 ax-pre-ltadd 8078 ax-pre-mulgt0 8079 ax-pre-mulext 8080 ax-arch 8081 ax-caucvg 8082 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-iun 3944 df-br 4061 df-opab 4123 df-mpt 4124 df-tr 4160 df-id 4359 df-po 4362 df-iso 4363 df-iord 4432 df-on 4434 df-ilim 4435 df-suc 4437 df-iom 4658 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-f1o 5298 df-fv 5299 df-isom 5300 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-recs 6416 df-frec 6502 df-map 6762 df-sup 7114 df-inf 7115 df-pnf 8146 df-mnf 8147 df-xr 8148 df-ltxr 8149 df-le 8150 df-sub 8282 df-neg 8283 df-reap 8685 df-ap 8692 df-div 8783 df-inn 9074 df-2 9132 df-3 9133 df-4 9134 df-n0 9333 df-z 9410 df-uz 9686 df-q 9778 df-rp 9813 df-xneg 9931 df-xadd 9932 df-seqfrec 10632 df-exp 10723 df-cj 11314 df-re 11315 df-im 11316 df-rsqrt 11470 df-abs 11471 df-topgen 13253 df-psmet 14466 df-xmet 14467 df-bl 14469 df-mopn 14470 df-top 14631 df-topon 14644 df-bases 14676 |
| This theorem is referenced by: metrest 15139 xmetxp 15140 |
| Copyright terms: Public domain | W3C validator |