| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzsuc | GIF version | ||
| Description: Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzsuc | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2uz 9704 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzfz2 10154 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 4 | peano2fzr 10159 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝑁 ∈ (𝑀...(𝑁 + 1))) | |
| 5 | 3, 4 | mpdan 421 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...(𝑁 + 1))) |
| 6 | fzsplit 10173 | . . 3 ⊢ (𝑁 ∈ (𝑀...(𝑁 + 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1)))) | |
| 7 | 5, 6 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1)))) |
| 8 | eluzelz 9657 | . . . 4 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ ℤ) | |
| 9 | fzsn 10188 | . . . 4 ⊢ ((𝑁 + 1) ∈ ℤ → ((𝑁 + 1)...(𝑁 + 1)) = {(𝑁 + 1)}) | |
| 10 | 1, 8, 9 | 3syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 1)...(𝑁 + 1)) = {(𝑁 + 1)}) |
| 11 | 10 | uneq2d 3327 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1))) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| 12 | 7, 11 | eqtrd 2238 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ∪ cun 3164 {csn 3633 ‘cfv 5271 (class class class)co 5944 1c1 7926 + caddc 7928 ℤcz 9372 ℤ≥cuz 9648 ...cfz 10130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: elfzp1 10194 fztp 10200 fzsuc2 10201 exfzdc 10369 uzsinds 10589 prmind2 12442 gsumfzfsumlemm 14349 2sqlem10 15602 |
| Copyright terms: Public domain | W3C validator |