![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzsuc | GIF version |
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fzsuc | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2uz 9125 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
2 | eluzfz2 9500 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
4 | peano2fzr 9505 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝑁 ∈ (𝑀...(𝑁 + 1))) | |
5 | 3, 4 | mpdan 413 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...(𝑁 + 1))) |
6 | fzsplit 9519 | . . 3 ⊢ (𝑁 ∈ (𝑀...(𝑁 + 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1)))) | |
7 | 5, 6 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1)))) |
8 | eluzelz 9082 | . . . 4 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ ℤ) | |
9 | fzsn 9534 | . . . 4 ⊢ ((𝑁 + 1) ∈ ℤ → ((𝑁 + 1)...(𝑁 + 1)) = {(𝑁 + 1)}) | |
10 | 1, 8, 9 | 3syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 1)...(𝑁 + 1)) = {(𝑁 + 1)}) |
11 | 10 | uneq2d 3155 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1))) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
12 | 7, 11 | eqtrd 2121 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 ∪ cun 2998 {csn 3450 ‘cfv 5028 (class class class)co 5666 1c1 7405 + caddc 7407 ℤcz 8804 ℤ≥cuz 9073 ...cfz 9478 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7490 ax-resscn 7491 ax-1cn 7492 ax-1re 7493 ax-icn 7494 ax-addcl 7495 ax-addrcl 7496 ax-mulcl 7497 ax-addcom 7499 ax-addass 7501 ax-distr 7503 ax-i2m1 7504 ax-0lt1 7505 ax-0id 7507 ax-rnegex 7508 ax-cnre 7510 ax-pre-ltirr 7511 ax-pre-ltwlin 7512 ax-pre-lttrn 7513 ax-pre-apti 7514 ax-pre-ltadd 7515 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-res 4463 df-ima 4464 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-pnf 7578 df-mnf 7579 df-xr 7580 df-ltxr 7581 df-le 7582 df-sub 7709 df-neg 7710 df-inn 8477 df-n0 8728 df-z 8805 df-uz 9074 df-fz 9479 |
This theorem is referenced by: elfzp1 9540 fztp 9546 fzsuc2 9547 exfzdc 9705 uzsinds 9902 prmind2 11434 |
Copyright terms: Public domain | W3C validator |