| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zlmsca | GIF version | ||
| Description: Scalar ring of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.) |
| Ref | Expression |
|---|---|
| zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zlmsca | ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaslid 12840 | . . . . 5 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 2 | 1 | simpri 113 | . . . 4 ⊢ (Scalar‘ndx) ∈ ℕ |
| 3 | zringring 14159 | . . . 4 ⊢ ℤring ∈ Ring | |
| 4 | setsex 12720 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) | |
| 5 | 2, 3, 4 | mp3an23 1340 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) |
| 6 | mulgex 13263 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | |
| 7 | vscandxnscandx 12849 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | |
| 8 | 7 | necomi 2452 | . . . 4 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 9 | vscaslid 12850 | . . . . 5 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 10 | 9 | simpri 113 | . . . 4 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
| 11 | 1, 8, 10 | setsslnid 12740 | . . 3 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ (.g‘𝐺) ∈ V) → (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 12 | 5, 6, 11 | syl2anc 411 | . 2 ⊢ (𝐺 ∈ 𝑉 → (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 13 | 1 | setsslid 12739 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ℤring ∈ Ring) → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
| 14 | 3, 13 | mpan2 425 | . 2 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
| 15 | zlmbas.w | . . . 4 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 16 | eqid 2196 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 17 | 15, 16 | zlmval 14193 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
| 18 | 17 | fveq2d 5563 | . 2 ⊢ (𝐺 ∈ 𝑉 → (Scalar‘𝑊) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 19 | 12, 14, 18 | 3eqtr4d 2239 | 1 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3626 ‘cfv 5259 (class class class)co 5923 ℕcn 8992 ndxcnx 12685 sSet csts 12686 Slot cslot 12687 Scalarcsca 12768 ·𝑠 cvsca 12769 .gcmg 13259 Ringcrg 13562 ℤringczring 14156 ℤModczlm 14178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-addf 8003 ax-mulf 8004 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-frec 6450 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 df-9 9058 df-n0 9252 df-z 9329 df-dec 9460 df-uz 9604 df-rp 9731 df-fz 10086 df-seqfrec 10542 df-cj 11009 df-abs 11166 df-struct 12690 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-iress 12696 df-plusg 12778 df-mulr 12779 df-starv 12780 df-sca 12781 df-vsca 12782 df-tset 12784 df-ple 12785 df-ds 12787 df-unif 12788 df-0g 12939 df-topgen 12941 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-grp 13145 df-minusg 13146 df-mulg 13260 df-subg 13310 df-cmn 13426 df-mgp 13487 df-ur 13526 df-ring 13564 df-cring 13565 df-subrg 13785 df-bl 14112 df-mopn 14113 df-fg 14115 df-metu 14116 df-cnfld 14123 df-zring 14157 df-zlm 14181 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |