| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zlmsca | GIF version | ||
| Description: Scalar ring of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.) |
| Ref | Expression |
|---|---|
| zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zlmsca | ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaslid 13186 | . . . . 5 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 2 | 1 | simpri 113 | . . . 4 ⊢ (Scalar‘ndx) ∈ ℕ |
| 3 | zringring 14557 | . . . 4 ⊢ ℤring ∈ Ring | |
| 4 | setsex 13064 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) | |
| 5 | 2, 3, 4 | mp3an23 1363 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) |
| 6 | mulgex 13660 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | |
| 7 | vscandxnscandx 13195 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | |
| 8 | 7 | necomi 2485 | . . . 4 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 9 | vscaslid 13196 | . . . . 5 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 10 | 9 | simpri 113 | . . . 4 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
| 11 | 1, 8, 10 | setsslnid 13084 | . . 3 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ (.g‘𝐺) ∈ V) → (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 12 | 5, 6, 11 | syl2anc 411 | . 2 ⊢ (𝐺 ∈ 𝑉 → (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 13 | 1 | setsslid 13083 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ℤring ∈ Ring) → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
| 14 | 3, 13 | mpan2 425 | . 2 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
| 15 | zlmbas.w | . . . 4 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 16 | eqid 2229 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 17 | 15, 16 | zlmval 14591 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
| 18 | 17 | fveq2d 5631 | . 2 ⊢ (𝐺 ∈ 𝑉 → (Scalar‘𝑊) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 19 | 12, 14, 18 | 3eqtr4d 2272 | 1 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ‘cfv 5318 (class class class)co 6001 ℕcn 9110 ndxcnx 13029 sSet csts 13030 Slot cslot 13031 Scalarcsca 13113 ·𝑠 cvsca 13114 .gcmg 13656 Ringcrg 13959 ℤringczring 14554 ℤModczlm 14576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-addf 8121 ax-mulf 8122 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-z 9447 df-dec 9579 df-uz 9723 df-rp 9850 df-fz 10205 df-seqfrec 10670 df-cj 11353 df-abs 11510 df-struct 13034 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-mulr 13124 df-starv 13125 df-sca 13126 df-vsca 13127 df-tset 13129 df-ple 13130 df-ds 13132 df-unif 13133 df-0g 13291 df-topgen 13293 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-mulg 13657 df-subg 13707 df-cmn 13823 df-mgp 13884 df-ur 13923 df-ring 13961 df-cring 13962 df-subrg 14183 df-bl 14510 df-mopn 14511 df-fg 14513 df-metu 14514 df-cnfld 14521 df-zring 14555 df-zlm 14579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |