| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zlmsca | GIF version | ||
| Description: Scalar ring of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.) |
| Ref | Expression |
|---|---|
| zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zlmsca | ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaslid 12855 | . . . . 5 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 2 | 1 | simpri 113 | . . . 4 ⊢ (Scalar‘ndx) ∈ ℕ |
| 3 | zringring 14225 | . . . 4 ⊢ ℤring ∈ Ring | |
| 4 | setsex 12735 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) | |
| 5 | 2, 3, 4 | mp3an23 1340 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) |
| 6 | mulgex 13329 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | |
| 7 | vscandxnscandx 12864 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | |
| 8 | 7 | necomi 2452 | . . . 4 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 9 | vscaslid 12865 | . . . . 5 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 10 | 9 | simpri 113 | . . . 4 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
| 11 | 1, 8, 10 | setsslnid 12755 | . . 3 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ (.g‘𝐺) ∈ V) → (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 12 | 5, 6, 11 | syl2anc 411 | . 2 ⊢ (𝐺 ∈ 𝑉 → (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 13 | 1 | setsslid 12754 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ℤring ∈ Ring) → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
| 14 | 3, 13 | mpan2 425 | . 2 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
| 15 | zlmbas.w | . . . 4 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 16 | eqid 2196 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 17 | 15, 16 | zlmval 14259 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
| 18 | 17 | fveq2d 5565 | . 2 ⊢ (𝐺 ∈ 𝑉 → (Scalar‘𝑊) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 19 | 12, 14, 18 | 3eqtr4d 2239 | 1 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3626 ‘cfv 5259 (class class class)co 5925 ℕcn 9007 ndxcnx 12700 sSet csts 12701 Slot cslot 12702 Scalarcsca 12783 ·𝑠 cvsca 12784 .gcmg 13325 Ringcrg 13628 ℤringczring 14222 ℤModczlm 14244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-rp 9746 df-fz 10101 df-seqfrec 10557 df-cj 11024 df-abs 11181 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-starv 12795 df-sca 12796 df-vsca 12797 df-tset 12799 df-ple 12800 df-ds 12802 df-unif 12803 df-0g 12960 df-topgen 12962 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-mulg 13326 df-subg 13376 df-cmn 13492 df-mgp 13553 df-ur 13592 df-ring 13630 df-cring 13631 df-subrg 13851 df-bl 14178 df-mopn 14179 df-fg 14181 df-metu 14182 df-cnfld 14189 df-zring 14223 df-zlm 14247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |