ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climub GIF version

Theorem climub 11081
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
clim2iser.1 𝑍 = (ℤ𝑀)
climub.2 (𝜑𝑁𝑍)
climub.3 (𝜑𝐹𝐴)
climub.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climub.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
climub (𝜑 → (𝐹𝑁) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climub
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2117 . 2 (ℤ𝑁) = (ℤ𝑁)
2 climub.2 . . . 4 (𝜑𝑁𝑍)
3 clim2iser.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2210 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 9303 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 14 . 2 (𝜑𝑁 ∈ ℤ)
7 fveq2 5389 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
87eleq1d 2186 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
98imbi2d 229 . . . 4 (𝑘 = 𝑁 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑁) ∈ ℝ)))
10 climub.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1110expcom 115 . . . 4 (𝑘𝑍 → (𝜑 → (𝐹𝑘) ∈ ℝ))
129, 11vtoclga 2726 . . 3 (𝑁𝑍 → (𝜑 → (𝐹𝑁) ∈ ℝ))
132, 12mpcom 36 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 climub.3 . 2 (𝜑𝐹𝐴)
153uztrn2 9311 . . . 4 ((𝑁𝑍𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
162, 15sylan 281 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
17 fveq2 5389 . . . . . . 7 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1817eleq1d 2186 . . . . . 6 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑗) ∈ ℝ))
1918imbi2d 229 . . . . 5 (𝑘 = 𝑗 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑗) ∈ ℝ)))
2019, 11vtoclga 2726 . . . 4 (𝑗𝑍 → (𝜑 → (𝐹𝑗) ∈ ℝ))
2120impcom 124 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
2216, 21syldan 280 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) ∈ ℝ)
23 simpr 109 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ (ℤ𝑁))
24 elfzuz 9770 . . . . 5 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
253uztrn2 9311 . . . . . . 7 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
262, 25sylan 281 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2726, 10syldan 280 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2824, 27sylan2 284 . . . 4 ((𝜑𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantlr 468 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
30 elfzuz 9770 . . . . 5 (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ𝑁))
31 climub.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3226, 31syldan 280 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3330, 32sylan2 284 . . . 4 ((𝜑𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3433adantlr 468 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3523, 29, 34monoord 10217 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑁) ≤ (𝐹𝑗))
361, 6, 13, 14, 22, 35climlec2 11078 1 (𝜑 → (𝐹𝑁) ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465   class class class wbr 3899  cfv 5093  (class class class)co 5742  cr 7587  1c1 7589   + caddc 7591  cle 7769  cmin 7901  cz 9022  cuz 9294  ...cfz 9758  cli 11015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-rp 9410  df-fz 9759  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-clim 11016
This theorem is referenced by:  climserle  11082
  Copyright terms: Public domain W3C validator