Colors of
variables: wff
setvar class |
Syntax hints:
= wceq 1541 (class class class)co 7408
0cc0 11109 1c1 11110
− cmin 11443 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 |
This theorem is referenced by: nnm1nn0
12512 xov1plusxeqvd
13474 fseq1p1m1
13574 elfzp1b
13577 elfzm1b
13578 elfznelfzo
13736 fldiv4lem1div2
13801 fzennn
13932 faclbnd4lem4
14255 lsw1
14516 ccat2s1p2
14579 revs1
14714 arisum
15805 pwdif
15813 geo2sum
15818 bpoly1
15994 nn0o
16325 exprmfct
16640 phiprmpw
16708 phiprm
16709 odzdvds
16727 prmpwdvds
16836 prmreclem4
16851 vdwapun
16906 sylow1lem1
19465 efgs1b
19603 efgsfo
19606 efgredlema
19607 efgredeu
19619 imasdsf1olem
23878 htpycom
24491 htpycc
24495 reparphti
24512 pcoval2
24531 pcocn
24532 pcohtpylem
24534 pcopt
24537 pcorevcl
24540 pcorevlem
24541 pi1xfrcnv
24572 dvexp
25469 dvlipcn
25510 dvply1
25796 vieta1
25824 pserdvlem2
25939 abelthlem2
25943 coseq1
26033 advlogexp
26162 logtayl
26167 cxpaddlelem
26256 isosctrlem2
26321 asin1
26396 leibpilem2
26443 log2ublem3
26450 scvxcvx
26487 1sgmprm
26699 dchrfi
26755 lgslem4
26800 lgsne0
26835 lgsquad2lem2
26885 2lgsoddprmlem3a
26910 rpvmasumlem
26987 selberg2lem
27050 logdivbnd
27056 pntrsumo1
27065 pntrlog2bndlem4
27080 pntrlog2bndlem5
27081 pntpbnd2
27087 ostth2lem2
27134 axpaschlem
28195 elntg2
28240 wwlksn0s
29112 clwwlkn1
29291 hst1h
31475 st0
31497 archirngz
32330 drngdimgt0
32698 lmatfval
32789 lmat22e11
32793 fib2
33396 ballotlem4
33492 ballotlemi1
33496 ballotlemii
33497 ballotlemic
33500 ballotlem1c
33501 ballotlemfrceq
33522 signsvtn0
33576 signstfveq0a
33582 subfacp1lem6
34171 cvxpconn
34228 cvxsconn
34229 cvmliftlem10
34280 cvmliftlem13
34282 bcprod
34703 gg-reparphti
35167 poimirlem3
36486 poimirlem4
36487 poimirlem13
36496 poimirlem19
36502 lcmfunnnd
40872 lcm1un
40873 lcmineqlem10
40898 lcmineqlem12
40900 lcmineqlem18
40906 metakunt30
41009 mapfzcons
41444 irrapxlem3
41552 2nn0ind
41674 jm2.18
41717 jm2.23
41725 dvnmul
44649 stoweidlem1
44707 stoweidlem11
44717 stoweidlem26
44732 stoweidlem34
44740 stoweidlem45
44751 wallispilem3
44773 wallispi
44776 stirlinglem5
44784 sqwvfourb
44935 upwordsing
45588 proththdlem
46271 341fppr2
46392 nnsgrpnmnd
46578 pzriprng1ALT
46810 blen1b
47264 nn0sumshdiglem1
47297 |