MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f13idfv Structured version   Visualization version   GIF version

Theorem f13idfv 14047
Description: A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Hypothesis
Ref Expression
f13idfv.a 𝐴 = (0...2)
Assertion
Ref Expression
f13idfv (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2))))

Proof of Theorem f13idfv
StepHypRef Expression
1 0z 12631 . . 3 0 ∈ ℤ
2 1z 12654 . . 3 1 ∈ ℤ
3 2z 12656 . . 3 2 ∈ ℤ
41, 2, 33pm3.2i 1340 . 2 (0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ)
5 0ne1 12344 . . 3 0 ≠ 1
6 0ne2 12480 . . 3 0 ≠ 2
7 1ne2 12481 . . 3 1 ≠ 2
85, 6, 73pm3.2i 1340 . 2 (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)
9 f13idfv.a . . . 4 𝐴 = (0...2)
10 fz0tp 13674 . . . 4 (0...2) = {0, 1, 2}
119, 10eqtri 2765 . . 3 𝐴 = {0, 1, 2}
1211f13dfv 7301 . 2 (((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)) → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))))
134, 8, 12mp2an 692 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940  {ctp 4638  wf 6565  1-1wf1 6566  cfv 6569  (class class class)co 7438  0cc0 11162  1c1 11163  2c2 12328  cz 12620  ...cfz 13553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-n0 12534  df-z 12621  df-uz 12886  df-fz 13554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator