MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f13idfv Structured version   Visualization version   GIF version

Theorem f13idfv 13360
Description: A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Hypothesis
Ref Expression
f13idfv.a 𝐴 = (0...2)
Assertion
Ref Expression
f13idfv (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2))))

Proof of Theorem f13idfv
StepHypRef Expression
1 0z 11984 . . 3 0 ∈ ℤ
2 1z 12004 . . 3 1 ∈ ℤ
3 2z 12006 . . 3 2 ∈ ℤ
41, 2, 33pm3.2i 1334 . 2 (0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ)
5 0ne1 11700 . . 3 0 ≠ 1
6 0ne2 11836 . . 3 0 ≠ 2
7 1ne2 11837 . . 3 1 ≠ 2
85, 6, 73pm3.2i 1334 . 2 (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)
9 f13idfv.a . . . 4 𝐴 = (0...2)
10 fz0tp 13000 . . . 4 (0...2) = {0, 1, 2}
119, 10eqtri 2842 . . 3 𝐴 = {0, 1, 2}
1211f13dfv 7023 . 2 (((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)) → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))))
134, 8, 12mp2an 690 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2))))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  {ctp 4563  wf 6344  1-1wf1 6345  cfv 6348  (class class class)co 7148  0cc0 10529  1c1 10530  2c2 11684  cz 11973  ...cfz 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator