Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f13idfv | Structured version Visualization version GIF version |
Description: A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
Ref | Expression |
---|---|
f13idfv.a | ⊢ 𝐴 = (0...2) |
Ref | Expression |
---|---|
f13idfv | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12376 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 1z 12396 | . . 3 ⊢ 1 ∈ ℤ | |
3 | 2z 12398 | . . 3 ⊢ 2 ∈ ℤ | |
4 | 1, 2, 3 | 3pm3.2i 1339 | . 2 ⊢ (0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) |
5 | 0ne1 12090 | . . 3 ⊢ 0 ≠ 1 | |
6 | 0ne2 12226 | . . 3 ⊢ 0 ≠ 2 | |
7 | 1ne2 12227 | . . 3 ⊢ 1 ≠ 2 | |
8 | 5, 6, 7 | 3pm3.2i 1339 | . 2 ⊢ (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2) |
9 | f13idfv.a | . . . 4 ⊢ 𝐴 = (0...2) | |
10 | fz0tp 13403 | . . . 4 ⊢ (0...2) = {0, 1, 2} | |
11 | 9, 10 | eqtri 2764 | . . 3 ⊢ 𝐴 = {0, 1, 2} |
12 | 11 | f13dfv 7178 | . 2 ⊢ (((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)) → (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2))))) |
13 | 4, 8, 12 | mp2an 690 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 {ctp 4569 ⟶wf 6454 –1-1→wf1 6455 ‘cfv 6458 (class class class)co 7307 0cc0 10917 1c1 10918 2c2 12074 ℤcz 12365 ...cfz 13285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |