![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f13idfv | Structured version Visualization version GIF version |
Description: A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
Ref | Expression |
---|---|
f13idfv.a | ⊢ 𝐴 = (0...2) |
Ref | Expression |
---|---|
f13idfv | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12631 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 1z 12654 | . . 3 ⊢ 1 ∈ ℤ | |
3 | 2z 12656 | . . 3 ⊢ 2 ∈ ℤ | |
4 | 1, 2, 3 | 3pm3.2i 1340 | . 2 ⊢ (0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) |
5 | 0ne1 12344 | . . 3 ⊢ 0 ≠ 1 | |
6 | 0ne2 12480 | . . 3 ⊢ 0 ≠ 2 | |
7 | 1ne2 12481 | . . 3 ⊢ 1 ≠ 2 | |
8 | 5, 6, 7 | 3pm3.2i 1340 | . 2 ⊢ (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2) |
9 | f13idfv.a | . . . 4 ⊢ 𝐴 = (0...2) | |
10 | fz0tp 13674 | . . . 4 ⊢ (0...2) = {0, 1, 2} | |
11 | 9, 10 | eqtri 2765 | . . 3 ⊢ 𝐴 = {0, 1, 2} |
12 | 11 | f13dfv 7301 | . 2 ⊢ (((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)) → (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2))))) |
13 | 4, 8, 12 | mp2an 692 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 {ctp 4638 ⟶wf 6565 –1-1→wf1 6566 ‘cfv 6569 (class class class)co 7438 0cc0 11162 1c1 11163 2c2 12328 ℤcz 12620 ...cfz 13553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |