![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prhash2ex | Structured version Visualization version GIF version |
Description: There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 14364, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
prhash2ex | ⊢ (♯‘{0, 1}) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne1 12279 | . 2 ⊢ 0 ≠ 1 | |
2 | c0ex 11204 | . . 3 ⊢ 0 ∈ V | |
3 | 1ex 11206 | . . 3 ⊢ 1 ∈ V | |
4 | hashprg 14351 | . . . 4 ⊢ ((0 ∈ V ∧ 1 ∈ V) → (0 ≠ 1 ↔ (♯‘{0, 1}) = 2)) | |
5 | 4 | bicomd 222 | . . 3 ⊢ ((0 ∈ V ∧ 1 ∈ V) → ((♯‘{0, 1}) = 2 ↔ 0 ≠ 1)) |
6 | 2, 3, 5 | mp2an 691 | . 2 ⊢ ((♯‘{0, 1}) = 2 ↔ 0 ≠ 1) |
7 | 1, 6 | mpbir 230 | 1 ⊢ (♯‘{0, 1}) = 2 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 {cpr 4629 ‘cfv 6540 0cc0 11106 1c1 11107 2c2 12263 ♯chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 |
This theorem is referenced by: prmreclem2 16846 mgmnsgrpex 18808 sgrpnmndex 18809 usgrexmplef 28496 umgr2v2evd2 28764 ex-hash 29686 |
Copyright terms: Public domain | W3C validator |