Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzel Structured version   Visualization version   GIF version

Theorem zlmodzxzel 42661
Description: An element of the (base set of the) -module ℤ × ℤ. (Contributed by AV, 21-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
Assertion
Ref Expression
zlmodzxzel ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (Base‘𝑍))

Proof of Theorem zlmodzxzel
StepHypRef Expression
1 c0ex 10236 . . . . . 6 0 ∈ V
2 1ex 10237 . . . . . 6 1 ∈ V
31, 2pm3.2i 447 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
4 0ne1 11290 . . . . 5 0 ≠ 1
5 fprg 6565 . . . . 5 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶{𝐴, 𝐵})
63, 4, 5mp3an13 1563 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶{𝐴, 𝐵})
7 prssi 4487 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝐴, 𝐵} ⊆ ℤ)
8 zringbas 20039 . . . . 5 ℤ = (Base‘ℤring)
97, 8syl6sseq 3800 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝐴, 𝐵} ⊆ (Base‘ℤring))
106, 9fssd 6197 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶(Base‘ℤring))
11 fvex 6342 . . . . 5 (Base‘ℤring) ∈ V
12 prex 5037 . . . . 5 {0, 1} ∈ V
1311, 12pm3.2i 447 . . . 4 ((Base‘ℤring) ∈ V ∧ {0, 1} ∈ V)
14 elmapg 8022 . . . 4 (((Base‘ℤring) ∈ V ∧ {0, 1} ∈ V) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ ((Base‘ℤring) ↑𝑚 {0, 1}) ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶(Base‘ℤring)))
1513, 14mp1i 13 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ ((Base‘ℤring) ↑𝑚 {0, 1}) ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶(Base‘ℤring)))
1610, 15mpbird 247 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ ((Base‘ℤring) ↑𝑚 {0, 1}))
17 zringring 20036 . . . 4 ring ∈ Ring
18 prfi 8391 . . . 4 {0, 1} ∈ Fin
1917, 18pm3.2i 447 . . 3 (ℤring ∈ Ring ∧ {0, 1} ∈ Fin)
20 zlmodzxz.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
21 eqid 2771 . . . 4 (Base‘ℤring) = (Base‘ℤring)
2220, 21frlmfibas 20322 . . 3 ((ℤring ∈ Ring ∧ {0, 1} ∈ Fin) → ((Base‘ℤring) ↑𝑚 {0, 1}) = (Base‘𝑍))
2319, 22mp1i 13 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((Base‘ℤring) ↑𝑚 {0, 1}) = (Base‘𝑍))
2416, 23eleqtrd 2852 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (Base‘𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  {cpr 4318  cop 4322  wf 6027  cfv 6031  (class class class)co 6793  𝑚 cmap 8009  Fincfn 8109  0cc0 10138  1c1 10139  cz 11579  Basecbs 16064  Ringcrg 18755  ringzring 20033   freeLMod cfrlm 20307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-0g 16310  df-prds 16316  df-pws 16318  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-subg 17799  df-cmn 18402  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-subrg 18988  df-sra 19387  df-rgmod 19388  df-cnfld 19962  df-zring 20034  df-dsmm 20293  df-frlm 20308
This theorem is referenced by:  zlmodzxzscm  42663  zlmodzxzadd  42664  zlmodzxzsubm  42665  zlmodzxzsub  42666  zlmodzxzldeplem3  42819  zlmodzxzldep  42821  ldepsnlinclem1  42822  ldepsnlinclem2  42823  ldepsnlinc  42825
  Copyright terms: Public domain W3C validator