| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzel | Structured version Visualization version GIF version | ||
| Description: An element of the (base set of the) ℤ-module ℤ × ℤ. (Contributed by AV, 21-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| Ref | Expression |
|---|---|
| zlmodzxzel | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (Base‘𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11255 | . . . . . 6 ⊢ 0 ∈ V | |
| 2 | 1ex 11257 | . . . . . 6 ⊢ 1 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (0 ∈ V ∧ 1 ∈ V) |
| 4 | 0ne1 12337 | . . . . 5 ⊢ 0 ≠ 1 | |
| 5 | fprg 7175 | . . . . 5 ⊢ (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≠ 1) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶{𝐴, 𝐵}) | |
| 6 | 3, 4, 5 | mp3an13 1454 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶{𝐴, 𝐵}) |
| 7 | prssi 4821 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝐴, 𝐵} ⊆ ℤ) | |
| 8 | zringbas 21464 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 9 | 7, 8 | sseqtrdi 4024 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝐴, 𝐵} ⊆ (Base‘ℤring)) |
| 10 | 6, 9 | fssd 6753 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶(Base‘ℤring)) |
| 11 | fvex 6919 | . . . . 5 ⊢ (Base‘ℤring) ∈ V | |
| 12 | prex 5437 | . . . . 5 ⊢ {0, 1} ∈ V | |
| 13 | 11, 12 | pm3.2i 470 | . . . 4 ⊢ ((Base‘ℤring) ∈ V ∧ {0, 1} ∈ V) |
| 14 | elmapg 8879 | . . . 4 ⊢ (((Base‘ℤring) ∈ V ∧ {0, 1} ∈ V) → ({〈0, 𝐴〉, 〈1, 𝐵〉} ∈ ((Base‘ℤring) ↑m {0, 1}) ↔ {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶(Base‘ℤring))) | |
| 15 | 13, 14 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ({〈0, 𝐴〉, 〈1, 𝐵〉} ∈ ((Base‘ℤring) ↑m {0, 1}) ↔ {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶(Base‘ℤring))) |
| 16 | 10, 15 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ ((Base‘ℤring) ↑m {0, 1})) |
| 17 | zringring 21460 | . . . 4 ⊢ ℤring ∈ Ring | |
| 18 | prfi 9363 | . . . 4 ⊢ {0, 1} ∈ Fin | |
| 19 | 17, 18 | pm3.2i 470 | . . 3 ⊢ (ℤring ∈ Ring ∧ {0, 1} ∈ Fin) |
| 20 | zlmodzxz.z | . . . 4 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 21 | eqid 2737 | . . . 4 ⊢ (Base‘ℤring) = (Base‘ℤring) | |
| 22 | 20, 21 | frlmfibas 21782 | . . 3 ⊢ ((ℤring ∈ Ring ∧ {0, 1} ∈ Fin) → ((Base‘ℤring) ↑m {0, 1}) = (Base‘𝑍)) |
| 23 | 19, 22 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((Base‘ℤring) ↑m {0, 1}) = (Base‘𝑍)) |
| 24 | 16, 23 | eleqtrd 2843 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (Base‘𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 {cpr 4628 〈cop 4632 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 Fincfn 8985 0cc0 11155 1c1 11156 ℤcz 12613 Basecbs 17247 Ringcrg 20230 ℤringczring 21457 freeLMod cfrlm 21766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17486 df-prds 17492 df-pws 17494 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-subrng 20546 df-subrg 20570 df-sra 21172 df-rgmod 21173 df-cnfld 21365 df-zring 21458 df-dsmm 21752 df-frlm 21767 |
| This theorem is referenced by: zlmodzxzscm 48273 zlmodzxzadd 48274 zlmodzxzsubm 48275 zlmodzxzsub 48276 zlmodzxzldeplem3 48419 zlmodzxzldep 48421 ldepsnlinclem1 48422 ldepsnlinclem2 48423 ldepsnlinc 48425 |
| Copyright terms: Public domain | W3C validator |