Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzel Structured version   Visualization version   GIF version

Theorem zlmodzxzel 45660
Description: An element of the (base set of the) -module ℤ × ℤ. (Contributed by AV, 21-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
Assertion
Ref Expression
zlmodzxzel ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (Base‘𝑍))

Proof of Theorem zlmodzxzel
StepHypRef Expression
1 c0ex 10970 . . . . . 6 0 ∈ V
2 1ex 10972 . . . . . 6 1 ∈ V
31, 2pm3.2i 471 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
4 0ne1 12044 . . . . 5 0 ≠ 1
5 fprg 7024 . . . . 5 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶{𝐴, 𝐵})
63, 4, 5mp3an13 1451 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶{𝐴, 𝐵})
7 prssi 4760 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝐴, 𝐵} ⊆ ℤ)
8 zringbas 20674 . . . . 5 ℤ = (Base‘ℤring)
97, 8sseqtrdi 3976 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝐴, 𝐵} ⊆ (Base‘ℤring))
106, 9fssd 6616 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶(Base‘ℤring))
11 fvex 6784 . . . . 5 (Base‘ℤring) ∈ V
12 prex 5359 . . . . 5 {0, 1} ∈ V
1311, 12pm3.2i 471 . . . 4 ((Base‘ℤring) ∈ V ∧ {0, 1} ∈ V)
14 elmapg 8611 . . . 4 (((Base‘ℤring) ∈ V ∧ {0, 1} ∈ V) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ ((Base‘ℤring) ↑m {0, 1}) ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶(Base‘ℤring)))
1513, 14mp1i 13 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ ((Base‘ℤring) ↑m {0, 1}) ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}⟶(Base‘ℤring)))
1610, 15mpbird 256 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ ((Base‘ℤring) ↑m {0, 1}))
17 zringring 20671 . . . 4 ring ∈ Ring
18 prfi 9067 . . . 4 {0, 1} ∈ Fin
1917, 18pm3.2i 471 . . 3 (ℤring ∈ Ring ∧ {0, 1} ∈ Fin)
20 zlmodzxz.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
21 eqid 2740 . . . 4 (Base‘ℤring) = (Base‘ℤring)
2220, 21frlmfibas 20967 . . 3 ((ℤring ∈ Ring ∧ {0, 1} ∈ Fin) → ((Base‘ℤring) ↑m {0, 1}) = (Base‘𝑍))
2319, 22mp1i 13 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((Base‘ℤring) ↑m {0, 1}) = (Base‘𝑍))
2416, 23eleqtrd 2843 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (Base‘𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  Vcvv 3431  {cpr 4569  cop 4573  wf 6428  cfv 6432  (class class class)co 7271  m cmap 8598  Fincfn 8716  0cc0 10872  1c1 10873  cz 12319  Basecbs 16910  Ringcrg 19781  ringczring 20668   freeLMod cfrlm 20951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-fz 13239  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-0g 17150  df-prds 17156  df-pws 17158  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-subg 18750  df-cmn 19386  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-subrg 20020  df-sra 20432  df-rgmod 20433  df-cnfld 20596  df-zring 20669  df-dsmm 20937  df-frlm 20952
This theorem is referenced by:  zlmodzxzscm  45662  zlmodzxzadd  45663  zlmodzxzsubm  45664  zlmodzxzsub  45665  zlmodzxzldeplem3  45812  zlmodzxzldep  45814  ldepsnlinclem1  45815  ldepsnlinclem2  45816  ldepsnlinc  45818
  Copyright terms: Public domain W3C validator