| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzel | Structured version Visualization version GIF version | ||
| Description: An element of the (base set of the) ℤ-module ℤ × ℤ. (Contributed by AV, 21-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| Ref | Expression |
|---|---|
| zlmodzxzel | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (Base‘𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11106 | . . . . . 6 ⊢ 0 ∈ V | |
| 2 | 1ex 11108 | . . . . . 6 ⊢ 1 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (0 ∈ V ∧ 1 ∈ V) |
| 4 | 0ne1 12196 | . . . . 5 ⊢ 0 ≠ 1 | |
| 5 | fprg 7088 | . . . . 5 ⊢ (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≠ 1) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶{𝐴, 𝐵}) | |
| 6 | 3, 4, 5 | mp3an13 1454 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶{𝐴, 𝐵}) |
| 7 | prssi 4770 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝐴, 𝐵} ⊆ ℤ) | |
| 8 | zringbas 21390 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 9 | 7, 8 | sseqtrdi 3970 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝐴, 𝐵} ⊆ (Base‘ℤring)) |
| 10 | 6, 9 | fssd 6668 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶(Base‘ℤring)) |
| 11 | fvex 6835 | . . . . 5 ⊢ (Base‘ℤring) ∈ V | |
| 12 | prex 5373 | . . . . 5 ⊢ {0, 1} ∈ V | |
| 13 | 11, 12 | pm3.2i 470 | . . . 4 ⊢ ((Base‘ℤring) ∈ V ∧ {0, 1} ∈ V) |
| 14 | elmapg 8763 | . . . 4 ⊢ (((Base‘ℤring) ∈ V ∧ {0, 1} ∈ V) → ({〈0, 𝐴〉, 〈1, 𝐵〉} ∈ ((Base‘ℤring) ↑m {0, 1}) ↔ {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶(Base‘ℤring))) | |
| 15 | 13, 14 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ({〈0, 𝐴〉, 〈1, 𝐵〉} ∈ ((Base‘ℤring) ↑m {0, 1}) ↔ {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}⟶(Base‘ℤring))) |
| 16 | 10, 15 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ ((Base‘ℤring) ↑m {0, 1})) |
| 17 | zringring 21386 | . . . 4 ⊢ ℤring ∈ Ring | |
| 18 | prfi 9208 | . . . 4 ⊢ {0, 1} ∈ Fin | |
| 19 | 17, 18 | pm3.2i 470 | . . 3 ⊢ (ℤring ∈ Ring ∧ {0, 1} ∈ Fin) |
| 20 | zlmodzxz.z | . . . 4 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 21 | eqid 2731 | . . . 4 ⊢ (Base‘ℤring) = (Base‘ℤring) | |
| 22 | 20, 21 | frlmfibas 21699 | . . 3 ⊢ ((ℤring ∈ Ring ∧ {0, 1} ∈ Fin) → ((Base‘ℤring) ↑m {0, 1}) = (Base‘𝑍)) |
| 23 | 19, 22 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((Base‘ℤring) ↑m {0, 1}) = (Base‘𝑍)) |
| 24 | 16, 23 | eleqtrd 2833 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (Base‘𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 {cpr 4575 〈cop 4579 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 0cc0 11006 1c1 11007 ℤcz 12468 Basecbs 17120 Ringcrg 20151 ℤringczring 21383 freeLMod cfrlm 21683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrng 20461 df-subrg 20485 df-sra 21107 df-rgmod 21108 df-cnfld 21292 df-zring 21384 df-dsmm 21669 df-frlm 21684 |
| This theorem is referenced by: zlmodzxzscm 48467 zlmodzxzadd 48468 zlmodzxzsubm 48469 zlmodzxzsub 48470 zlmodzxzldeplem3 48613 zlmodzxzldep 48615 ldepsnlinclem1 48616 ldepsnlinclem2 48617 ldepsnlinc 48619 |
| Copyright terms: Public domain | W3C validator |