![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-nnne0 | Structured version Visualization version GIF version |
Description: nnne0 12327 without ax-mulcom 11248. (Contributed by SN, 25-Jan-2025.) |
Ref | Expression |
---|---|
sn-nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne1 12364 | . . 3 ⊢ 0 ≠ 1 | |
2 | 0re 11292 | . . . 4 ⊢ 0 ∈ ℝ | |
3 | 1re 11290 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | lttri2i 11404 | . . 3 ⊢ (0 ≠ 1 ↔ (0 < 1 ∨ 1 < 0)) |
5 | 1, 4 | mpbi 230 | . 2 ⊢ (0 < 1 ∨ 1 < 0) |
6 | breq2 5170 | . . . . . 6 ⊢ (𝑥 = 1 → (0 < 𝑥 ↔ 0 < 1)) | |
7 | breq2 5170 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (0 < 𝑥 ↔ 0 < 𝑦)) | |
8 | breq2 5170 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (0 < 𝑥 ↔ 0 < (𝑦 + 1))) | |
9 | breq2 5170 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
10 | id 22 | . . . . . 6 ⊢ (0 < 1 → 0 < 1) | |
11 | nnre 12300 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
12 | 11 | ad2antlr 726 | . . . . . . 7 ⊢ (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 𝑦 ∈ ℝ) |
13 | 1red 11291 | . . . . . . 7 ⊢ (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 1 ∈ ℝ) | |
14 | simpr 484 | . . . . . . 7 ⊢ (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 0 < 𝑦) | |
15 | simpll 766 | . . . . . . 7 ⊢ (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 0 < 1) | |
16 | 12, 13, 14, 15 | sn-addgt0d 42423 | . . . . . 6 ⊢ (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 0 < (𝑦 + 1)) |
17 | 6, 7, 8, 9, 10, 16 | nnindd 12313 | . . . . 5 ⊢ ((0 < 1 ∧ 𝐴 ∈ ℕ) → 0 < 𝐴) |
18 | 17 | gt0ne0d 11854 | . . . 4 ⊢ ((0 < 1 ∧ 𝐴 ∈ ℕ) → 𝐴 ≠ 0) |
19 | 18 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 0 < 1) → 𝐴 ≠ 0) |
20 | breq1 5169 | . . . . . 6 ⊢ (𝑥 = 1 → (𝑥 < 0 ↔ 1 < 0)) | |
21 | breq1 5169 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 < 0 ↔ 𝑦 < 0)) | |
22 | breq1 5169 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 < 0 ↔ (𝑦 + 1) < 0)) | |
23 | breq1 5169 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0)) | |
24 | id 22 | . . . . . 6 ⊢ (1 < 0 → 1 < 0) | |
25 | 11 | ad2antlr 726 | . . . . . . 7 ⊢ (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 𝑦 ∈ ℝ) |
26 | 1red 11291 | . . . . . . 7 ⊢ (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 1 ∈ ℝ) | |
27 | simpr 484 | . . . . . . 7 ⊢ (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 𝑦 < 0) | |
28 | simpll 766 | . . . . . . 7 ⊢ (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 1 < 0) | |
29 | 25, 26, 27, 28 | sn-addlt0d 42422 | . . . . . 6 ⊢ (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → (𝑦 + 1) < 0) |
30 | 20, 21, 22, 23, 24, 29 | nnindd 12313 | . . . . 5 ⊢ ((1 < 0 ∧ 𝐴 ∈ ℕ) → 𝐴 < 0) |
31 | 30 | lt0ne0d 11855 | . . . 4 ⊢ ((1 < 0 ∧ 𝐴 ∈ ℕ) → 𝐴 ≠ 0) |
32 | 31 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 1 < 0) → 𝐴 ≠ 0) |
33 | 19, 32 | jaodan 958 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ (0 < 1 ∨ 1 < 0)) → 𝐴 ≠ 0) |
34 | 5, 33 | mpan2 690 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ℕcn 12293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-nn 12294 df-2 12356 df-3 12357 df-resub 42342 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |