Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-nnne0 Structured version   Visualization version   GIF version

Theorem sn-nnne0 42455
Description: nnne0 12298 without ax-mulcom 11217. (Contributed by SN, 25-Jan-2025.)
Assertion
Ref Expression
sn-nnne0 (𝐴 ∈ ℕ → 𝐴 ≠ 0)

Proof of Theorem sn-nnne0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ne1 12335 . . 3 0 ≠ 1
2 0re 11261 . . . 4 0 ∈ ℝ
3 1re 11259 . . . 4 1 ∈ ℝ
42, 3lttri2i 11373 . . 3 (0 ≠ 1 ↔ (0 < 1 ∨ 1 < 0))
51, 4mpbi 230 . 2 (0 < 1 ∨ 1 < 0)
6 breq2 5152 . . . . . 6 (𝑥 = 1 → (0 < 𝑥 ↔ 0 < 1))
7 breq2 5152 . . . . . 6 (𝑥 = 𝑦 → (0 < 𝑥 ↔ 0 < 𝑦))
8 breq2 5152 . . . . . 6 (𝑥 = (𝑦 + 1) → (0 < 𝑥 ↔ 0 < (𝑦 + 1)))
9 breq2 5152 . . . . . 6 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
10 id 22 . . . . . 6 (0 < 1 → 0 < 1)
11 nnre 12271 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
1211ad2antlr 727 . . . . . . 7 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 𝑦 ∈ ℝ)
13 1red 11260 . . . . . . 7 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 1 ∈ ℝ)
14 simpr 484 . . . . . . 7 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 0 < 𝑦)
15 simpll 767 . . . . . . 7 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 0 < 1)
1612, 13, 14, 15sn-addgt0d 42454 . . . . . 6 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 0 < (𝑦 + 1))
176, 7, 8, 9, 10, 16nnindd 12284 . . . . 5 ((0 < 1 ∧ 𝐴 ∈ ℕ) → 0 < 𝐴)
1817gt0ne0d 11825 . . . 4 ((0 < 1 ∧ 𝐴 ∈ ℕ) → 𝐴 ≠ 0)
1918ancoms 458 . . 3 ((𝐴 ∈ ℕ ∧ 0 < 1) → 𝐴 ≠ 0)
20 breq1 5151 . . . . . 6 (𝑥 = 1 → (𝑥 < 0 ↔ 1 < 0))
21 breq1 5151 . . . . . 6 (𝑥 = 𝑦 → (𝑥 < 0 ↔ 𝑦 < 0))
22 breq1 5151 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 < 0 ↔ (𝑦 + 1) < 0))
23 breq1 5151 . . . . . 6 (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0))
24 id 22 . . . . . 6 (1 < 0 → 1 < 0)
2511ad2antlr 727 . . . . . . 7 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 𝑦 ∈ ℝ)
26 1red 11260 . . . . . . 7 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 1 ∈ ℝ)
27 simpr 484 . . . . . . 7 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 𝑦 < 0)
28 simpll 767 . . . . . . 7 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 1 < 0)
2925, 26, 27, 28sn-addlt0d 42453 . . . . . 6 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → (𝑦 + 1) < 0)
3020, 21, 22, 23, 24, 29nnindd 12284 . . . . 5 ((1 < 0 ∧ 𝐴 ∈ ℕ) → 𝐴 < 0)
3130lt0ne0d 11826 . . . 4 ((1 < 0 ∧ 𝐴 ∈ ℕ) → 𝐴 ≠ 0)
3231ancoms 458 . . 3 ((𝐴 ∈ ℕ ∧ 1 < 0) → 𝐴 ≠ 0)
3319, 32jaodan 959 . 2 ((𝐴 ∈ ℕ ∧ (0 < 1 ∨ 1 < 0)) → 𝐴 ≠ 0)
345, 33mpan2 691 1 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cn 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-nn 12265  df-2 12327  df-3 12328  df-resub 42373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator