Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-nnne0 Structured version   Visualization version   GIF version

Theorem sn-nnne0 42433
Description: nnne0 12162 without ax-mulcom 11073. (Contributed by SN, 25-Jan-2025.)
Assertion
Ref Expression
sn-nnne0 (𝐴 ∈ ℕ → 𝐴 ≠ 0)

Proof of Theorem sn-nnne0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ne1 12199 . . 3 0 ≠ 1
2 0re 11117 . . . 4 0 ∈ ℝ
3 1re 11115 . . . 4 1 ∈ ℝ
42, 3lttri2i 11230 . . 3 (0 ≠ 1 ↔ (0 < 1 ∨ 1 < 0))
51, 4mpbi 230 . 2 (0 < 1 ∨ 1 < 0)
6 breq2 5096 . . . . . 6 (𝑥 = 1 → (0 < 𝑥 ↔ 0 < 1))
7 breq2 5096 . . . . . 6 (𝑥 = 𝑦 → (0 < 𝑥 ↔ 0 < 𝑦))
8 breq2 5096 . . . . . 6 (𝑥 = (𝑦 + 1) → (0 < 𝑥 ↔ 0 < (𝑦 + 1)))
9 breq2 5096 . . . . . 6 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
10 id 22 . . . . . 6 (0 < 1 → 0 < 1)
11 nnre 12135 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
1211ad2antlr 727 . . . . . . 7 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 𝑦 ∈ ℝ)
13 1red 11116 . . . . . . 7 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 1 ∈ ℝ)
14 simpr 484 . . . . . . 7 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 0 < 𝑦)
15 simpll 766 . . . . . . 7 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 0 < 1)
1612, 13, 14, 15sn-addgt0d 42432 . . . . . 6 (((0 < 1 ∧ 𝑦 ∈ ℕ) ∧ 0 < 𝑦) → 0 < (𝑦 + 1))
176, 7, 8, 9, 10, 16nnindd 12148 . . . . 5 ((0 < 1 ∧ 𝐴 ∈ ℕ) → 0 < 𝐴)
1817gt0ne0d 11684 . . . 4 ((0 < 1 ∧ 𝐴 ∈ ℕ) → 𝐴 ≠ 0)
1918ancoms 458 . . 3 ((𝐴 ∈ ℕ ∧ 0 < 1) → 𝐴 ≠ 0)
20 breq1 5095 . . . . . 6 (𝑥 = 1 → (𝑥 < 0 ↔ 1 < 0))
21 breq1 5095 . . . . . 6 (𝑥 = 𝑦 → (𝑥 < 0 ↔ 𝑦 < 0))
22 breq1 5095 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 < 0 ↔ (𝑦 + 1) < 0))
23 breq1 5095 . . . . . 6 (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0))
24 id 22 . . . . . 6 (1 < 0 → 1 < 0)
2511ad2antlr 727 . . . . . . 7 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 𝑦 ∈ ℝ)
26 1red 11116 . . . . . . 7 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 1 ∈ ℝ)
27 simpr 484 . . . . . . 7 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 𝑦 < 0)
28 simpll 766 . . . . . . 7 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → 1 < 0)
2925, 26, 27, 28sn-addlt0d 42431 . . . . . 6 (((1 < 0 ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 0) → (𝑦 + 1) < 0)
3020, 21, 22, 23, 24, 29nnindd 12148 . . . . 5 ((1 < 0 ∧ 𝐴 ∈ ℕ) → 𝐴 < 0)
3130lt0ne0d 11685 . . . 4 ((1 < 0 ∧ 𝐴 ∈ ℕ) → 𝐴 ≠ 0)
3231ancoms 458 . . 3 ((𝐴 ∈ ℕ ∧ 1 < 0) → 𝐴 ≠ 0)
3319, 32jaodan 959 . 2 ((𝐴 ∈ ℕ ∧ (0 < 1 ∨ 1 < 0)) → 𝐴 ≠ 0)
345, 33mpan2 691 1 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2109  wne 2925   class class class wbr 5092  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cn 12128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-nn 12129  df-2 12191  df-3 12192  df-resub 42339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator