| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > min1 | Structured version Visualization version GIF version | ||
| Description: The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.) |
| Ref | Expression |
|---|---|
| min1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11286 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11286 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmin1 13198 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ifcif 4505 class class class wbr 5124 ℝcr 11133 ℝ*cxr 11273 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 |
| This theorem is referenced by: ssfzunsnext 13591 reccn2 15618 setsstruct2 17198 ssblex 24372 nlmvscnlem1 24630 nrginvrcnlem 24635 icccmplem2 24768 xlebnum 24920 ipcnlem1 25202 ivthlem2 25410 ioombl1lem4 25519 mbfi1fseqlem5 25677 aalioulem5 26301 aalioulem6 26302 logcnlem3 26610 cxpcn3lem 26714 ftalem5 27044 chtdif 27125 ppidif 27130 chebbnd1lem1 27437 itg2addnc 37703 min1d 45479 mullimc 45625 mullimcf 45632 limcleqr 45653 addlimc 45657 0ellimcdiv 45658 limclner 45660 stoweidlem5 46014 fourierdlem103 46218 fourierdlem104 46219 ioorrnopnlem 46313 hsphoidmvle 46595 hoidmv1lelem1 46600 hoidmv1lelem2 46601 hoidmv1lelem3 46602 smfmullem1 46800 |
| Copyright terms: Public domain | W3C validator |