Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > min1 | Structured version Visualization version GIF version |
Description: The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.) |
Ref | Expression |
---|---|
min1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10952 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 10952 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmin1 12840 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ℝcr 10801 ℝ*cxr 10939 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: ssfzunsnext 13230 reccn2 15234 setsstruct2 16803 ssblex 23489 nlmvscnlem1 23756 nrginvrcnlem 23761 icccmplem2 23892 xlebnum 24034 ipcnlem1 24314 ivthlem2 24521 ioombl1lem4 24630 mbfi1fseqlem5 24789 aalioulem5 25401 aalioulem6 25402 logcnlem3 25704 cxpcn3lem 25805 ftalem5 26131 chtdif 26212 ppidif 26217 chebbnd1lem1 26522 itg2addnc 35758 min1d 42902 mullimc 43047 mullimcf 43054 limcleqr 43075 addlimc 43079 0ellimcdiv 43080 limclner 43082 stoweidlem5 43436 fourierdlem103 43640 fourierdlem104 43641 ioorrnopnlem 43735 hsphoidmvle 44014 hoidmv1lelem1 44019 hoidmv1lelem2 44020 hoidmv1lelem3 44021 smfmullem1 44212 |
Copyright terms: Public domain | W3C validator |