Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > min1 | Structured version Visualization version GIF version |
Description: The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.) |
Ref | Expression |
---|---|
min1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11021 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11021 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmin1 12911 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ifcif 4459 class class class wbr 5074 ℝcr 10870 ℝ*cxr 11008 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: ssfzunsnext 13301 reccn2 15306 setsstruct2 16875 ssblex 23581 nlmvscnlem1 23850 nrginvrcnlem 23855 icccmplem2 23986 xlebnum 24128 ipcnlem1 24409 ivthlem2 24616 ioombl1lem4 24725 mbfi1fseqlem5 24884 aalioulem5 25496 aalioulem6 25497 logcnlem3 25799 cxpcn3lem 25900 ftalem5 26226 chtdif 26307 ppidif 26312 chebbnd1lem1 26617 itg2addnc 35831 min1d 43012 mullimc 43157 mullimcf 43164 limcleqr 43185 addlimc 43189 0ellimcdiv 43190 limclner 43192 stoweidlem5 43546 fourierdlem103 43750 fourierdlem104 43751 ioorrnopnlem 43845 hsphoidmvle 44124 hoidmv1lelem1 44129 hoidmv1lelem2 44130 hoidmv1lelem3 44131 smfmullem1 44325 |
Copyright terms: Public domain | W3C validator |