Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > min1 | Structured version Visualization version GIF version |
Description: The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.) |
Ref | Expression |
---|---|
min1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11094 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11094 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmin1 12984 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ifcif 4471 class class class wbr 5087 ℝcr 10943 ℝ*cxr 11081 ≤ cle 11083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-pre-lttri 11018 ax-pre-lttrn 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 |
This theorem is referenced by: ssfzunsnext 13374 reccn2 15378 setsstruct2 16945 ssblex 23653 nlmvscnlem1 23922 nrginvrcnlem 23927 icccmplem2 24058 xlebnum 24200 ipcnlem1 24481 ivthlem2 24688 ioombl1lem4 24797 mbfi1fseqlem5 24956 aalioulem5 25568 aalioulem6 25569 logcnlem3 25871 cxpcn3lem 25972 ftalem5 26298 chtdif 26379 ppidif 26384 chebbnd1lem1 26689 itg2addnc 35887 min1d 43248 mullimc 43394 mullimcf 43401 limcleqr 43422 addlimc 43426 0ellimcdiv 43427 limclner 43429 stoweidlem5 43783 fourierdlem103 43987 fourierdlem104 43988 ioorrnopnlem 44082 hsphoidmvle 44362 hoidmv1lelem1 44367 hoidmv1lelem2 44368 hoidmv1lelem3 44369 smfmullem1 44567 |
Copyright terms: Public domain | W3C validator |