| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > min1 | Structured version Visualization version GIF version | ||
| Description: The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.) |
| Ref | Expression |
|---|---|
| min1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11308 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11308 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmin1 13220 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ifcif 4524 class class class wbr 5142 ℝcr 11155 ℝ*cxr 11295 ≤ cle 11297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 |
| This theorem is referenced by: ssfzunsnext 13610 reccn2 15634 setsstruct2 17212 ssblex 24439 nlmvscnlem1 24708 nrginvrcnlem 24713 icccmplem2 24846 xlebnum 24998 ipcnlem1 25280 ivthlem2 25488 ioombl1lem4 25597 mbfi1fseqlem5 25755 aalioulem5 26379 aalioulem6 26380 logcnlem3 26687 cxpcn3lem 26791 ftalem5 27121 chtdif 27202 ppidif 27207 chebbnd1lem1 27514 itg2addnc 37682 min1d 45488 mullimc 45636 mullimcf 45643 limcleqr 45664 addlimc 45668 0ellimcdiv 45669 limclner 45671 stoweidlem5 46025 fourierdlem103 46229 fourierdlem104 46230 ioorrnopnlem 46324 hsphoidmvle 46606 hoidmv1lelem1 46611 hoidmv1lelem2 46612 hoidmv1lelem3 46613 smfmullem1 46811 |
| Copyright terms: Public domain | W3C validator |