Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem10a Structured version   Visualization version   GIF version

Theorem 4atlem10a 36858
Description: Lemma for 4at 36867. Substitute 𝑉 for 𝑅. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem10a (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ↔ ((𝑃 𝑄) (𝑅 𝑊)) = ((𝑃 𝑄) (𝑉 𝑊))))

Proof of Theorem 4atlem10a
StepHypRef Expression
1 simp11 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → 𝐾 ∈ HL)
2 simp21 1203 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → 𝑅𝐴)
3 simp22 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → 𝑉𝐴)
41hllatd 36618 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → 𝐾 ∈ Lat)
5 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
6 eqid 2822 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 4at.j . . . . . 6 = (join‘𝐾)
8 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 36621 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
105, 9syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp23 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → 𝑊𝐴)
126, 8atbase 36543 . . . . 5 (𝑊𝐴𝑊 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → 𝑊 ∈ (Base‘𝐾))
146, 7latjcl 17652 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
154, 10, 13, 14syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
16 simp3 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → ¬ 𝑅 ((𝑃 𝑄) 𝑊))
17 4at.l . . . 4 = (le‘𝐾)
186, 17, 7, 8hlexchb2 36639 . . 3 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑉𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → (𝑅 (𝑉 ((𝑃 𝑄) 𝑊)) ↔ (𝑅 ((𝑃 𝑄) 𝑊)) = (𝑉 ((𝑃 𝑄) 𝑊))))
191, 2, 3, 15, 16, 18syl131anc 1380 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → (𝑅 (𝑉 ((𝑃 𝑄) 𝑊)) ↔ (𝑅 ((𝑃 𝑄) 𝑊)) = (𝑉 ((𝑃 𝑄) 𝑊))))
2017, 7, 84atlem4c 36855 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑉𝐴𝑊𝐴)) → ((𝑃 𝑄) (𝑉 𝑊)) = (𝑉 ((𝑃 𝑄) 𝑊)))
215, 3, 11, 20syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → ((𝑃 𝑄) (𝑉 𝑊)) = (𝑉 ((𝑃 𝑄) 𝑊)))
2221breq2d 5054 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ↔ 𝑅 (𝑉 ((𝑃 𝑄) 𝑊))))
2317, 7, 84atlem4c 36855 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑊𝐴)) → ((𝑃 𝑄) (𝑅 𝑊)) = (𝑅 ((𝑃 𝑄) 𝑊)))
245, 2, 11, 23syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → ((𝑃 𝑄) (𝑅 𝑊)) = (𝑅 ((𝑃 𝑄) 𝑊)))
2524, 21eqeq12d 2838 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → (((𝑃 𝑄) (𝑅 𝑊)) = ((𝑃 𝑄) (𝑉 𝑊)) ↔ (𝑅 ((𝑃 𝑄) 𝑊)) = (𝑉 ((𝑃 𝑄) 𝑊))))
2619, 22, 253bitr4d 314 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊)) → (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ↔ ((𝑃 𝑄) (𝑅 𝑊)) = ((𝑃 𝑄) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2114   class class class wbr 5042  cfv 6334  (class class class)co 7140  Basecbs 16474  lecple 16563  joincjn 17545  Latclat 17646  Atomscatm 36517  HLchlt 36604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-proset 17529  df-poset 17547  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-lat 17647  df-ats 36521  df-atl 36552  df-cvlat 36576  df-hlat 36605
This theorem is referenced by:  4atlem10b  36859
  Copyright terms: Public domain W3C validator