Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem9 Structured version   Visualization version   GIF version

Theorem 4atlem9 39592
Description: Lemma for 4at 39602. Substitute 𝑊 for 𝑆. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 ((𝑃 𝑄) (𝑅 𝑊)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑅 𝑊))))

Proof of Theorem 4atlem9
StepHypRef Expression
1 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
2 simp22 1208 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑆𝐴)
3 simp23 1209 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊𝐴)
41hllatd 39352 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ Lat)
5 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
6 eqid 2730 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 4at.j . . . . . 6 = (join‘𝐾)
8 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 39355 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
105, 9syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp21 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑅𝐴)
126, 8atbase 39277 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑅 ∈ (Base‘𝐾))
146, 7latjcl 18404 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
154, 10, 13, 14syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
16 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
17 4at.l . . . 4 = (le‘𝐾)
186, 17, 7, 8hlexchb2 39374 . . 3 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑊𝐴 ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 (𝑊 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 ((𝑃 𝑄) 𝑅)) = (𝑊 ((𝑃 𝑄) 𝑅))))
191, 2, 3, 15, 16, 18syl131anc 1385 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 (𝑊 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 ((𝑃 𝑄) 𝑅)) = (𝑊 ((𝑃 𝑄) 𝑅))))
2017, 7, 84atlem4d 39591 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑊𝐴)) → ((𝑃 𝑄) (𝑅 𝑊)) = (𝑊 ((𝑃 𝑄) 𝑅)))
215, 11, 3, 20syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) (𝑅 𝑊)) = (𝑊 ((𝑃 𝑄) 𝑅)))
2221breq2d 5121 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 ((𝑃 𝑄) (𝑅 𝑊)) ↔ 𝑆 (𝑊 ((𝑃 𝑄) 𝑅))))
2317, 7, 84atlem4d 39591 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑆 ((𝑃 𝑄) 𝑅)))
245, 11, 2, 23syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑆 ((𝑃 𝑄) 𝑅)))
2524, 21eqeq12d 2746 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑅 𝑊)) ↔ (𝑆 ((𝑃 𝑄) 𝑅)) = (𝑊 ((𝑃 𝑄) 𝑅))))
2619, 22, 253bitr4d 311 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 ((𝑃 𝑄) (𝑅 𝑊)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑅 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  lecple 17233  joincjn 18278  Latclat 18396  Atomscatm 39251  HLchlt 39338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-proset 18261  df-poset 18280  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-lat 18397  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339
This theorem is referenced by:  4atlem10b  39594
  Copyright terms: Public domain W3C validator