Proof of Theorem 4atlem9
Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → 𝐾 ∈ HL) |
2 | | simp22 1205 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → 𝑆 ∈ 𝐴) |
3 | | simp23 1206 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → 𝑊 ∈ 𝐴) |
4 | 1 | hllatd 37305 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → 𝐾 ∈ Lat) |
5 | | simp1 1134 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | 4at.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
8 | | 4at.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 6, 7, 8 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
10 | 5, 9 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
11 | | simp21 1204 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → 𝑅 ∈ 𝐴) |
12 | 6, 8 | atbase 37230 |
. . . . 5
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
13 | 11, 12 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → 𝑅 ∈ (Base‘𝐾)) |
14 | 6, 7 | latjcl 18072 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
15 | 4, 10, 13, 14 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
16 | | simp3 1136 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
17 | | 4at.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
18 | 6, 17, 7, 8 | hlexchb2 37326 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → (𝑆 ≤ (𝑊 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)) ↔ (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)) = (𝑊 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)))) |
19 | 1, 2, 3, 15, 16, 18 | syl131anc 1381 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → (𝑆 ≤ (𝑊 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)) ↔ (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)) = (𝑊 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)))) |
20 | 17, 7, 8 | 4atlem4d 37543 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑊)) = (𝑊 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
21 | 5, 11, 3, 20 | syl12anc 833 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑊)) = (𝑊 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
22 | 21 | breq2d 5082 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑊)) ↔ 𝑆 ≤ (𝑊 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)))) |
23 | 17, 7, 8 | 4atlem4d 37543 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
24 | 5, 11, 2, 23 | syl12anc 833 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
25 | 24, 21 | eqeq12d 2754 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑊)) ↔ (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)) = (𝑊 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)))) |
26 | 19, 22, 25 | 3bitr4d 310 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑊)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑊)))) |