Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atlem4d | Structured version Visualization version GIF version |
Description: Lemma for 4at 37623. Frequently used associative law. (Contributed by NM, 9-Jul-2012.) |
Ref | Expression |
---|---|
4at.l | ⊢ ≤ = (le‘𝐾) |
4at.j | ⊢ ∨ = (join‘𝐾) |
4at.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
4atlem4d | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ HL) | |
2 | 1 | hllatd 37374 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) |
3 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | 4at.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
5 | 4at.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 3, 4, 5 | hlatjcl 37377 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
7 | 6 | adantr 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
8 | 3, 5 | atbase 37299 | . . . 4 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
9 | 8 | ad2antrl 725 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) |
10 | 3, 5 | atbase 37299 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
11 | 10 | ad2antll 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) |
12 | 3, 4 | latjass 18199 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) |
13 | 2, 7, 9, 11, 12 | syl13anc 1371 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) |
14 | 3, 4 | latjcl 18155 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
15 | 2, 7, 9, 14 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
16 | 3, 4 | latjcom 18163 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
17 | 2, 15, 11, 16 | syl3anc 1370 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
18 | 13, 17 | eqtr3d 2782 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 lecple 16967 joincjn 18027 Latclat 18147 Atomscatm 37273 HLchlt 37360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-proset 18011 df-poset 18029 df-lub 18062 df-glb 18063 df-join 18064 df-meet 18065 df-lat 18148 df-ats 37277 df-atl 37308 df-cvlat 37332 df-hlat 37361 |
This theorem is referenced by: 4atlem9 37613 |
Copyright terms: Public domain | W3C validator |