Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atlem4d | Structured version Visualization version GIF version |
Description: Lemma for 4at 37606. Frequently used associative law. (Contributed by NM, 9-Jul-2012.) |
Ref | Expression |
---|---|
4at.l | ⊢ ≤ = (le‘𝐾) |
4at.j | ⊢ ∨ = (join‘𝐾) |
4at.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
4atlem4d | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ HL) | |
2 | 1 | hllatd 37357 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) |
3 | eqid 2739 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | 4at.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
5 | 4at.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 3, 4, 5 | hlatjcl 37360 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
7 | 6 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
8 | 3, 5 | atbase 37282 | . . . 4 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
9 | 8 | ad2antrl 724 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) |
10 | 3, 5 | atbase 37282 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
11 | 10 | ad2antll 725 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) |
12 | 3, 4 | latjass 18182 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) |
13 | 2, 7, 9, 11, 12 | syl13anc 1370 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) |
14 | 3, 4 | latjcl 18138 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
15 | 2, 7, 9, 14 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
16 | 3, 4 | latjcom 18146 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
17 | 2, 15, 11, 16 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
18 | 13, 17 | eqtr3d 2781 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 lecple 16950 joincjn 18010 Latclat 18130 Atomscatm 37256 HLchlt 37343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-proset 17994 df-poset 18012 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-lat 18131 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 |
This theorem is referenced by: 4atlem9 37596 |
Copyright terms: Public domain | W3C validator |