| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssvancl1 | Structured version Visualization version GIF version | ||
| Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 21068. Can it be used along with lspsnne1 21049, lspsnne2 21050 to shorten this proof? (Contributed by NM, 14-May-2015.) |
| Ref | Expression |
|---|---|
| lssvancl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssvancl.p | ⊢ + = (+g‘𝑊) |
| lssvancl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lssvancl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lssvancl.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lssvancl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| lssvancl.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lssvancl.n | ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| lssvancl1 | ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvancl.n | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) | |
| 2 | lssvancl.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lmodabl 20837 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 5 | lssvancl.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 6 | lssvancl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 7 | lssvancl.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lssvancl.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 9 | 7, 8 | lssel 20865 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| 10 | 5, 6, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 11 | lssvancl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 12 | lssvancl.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
| 13 | eqid 2731 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 14 | 7, 12, 13 | ablpncan2 19722 | . . . . 5 ⊢ ((𝑊 ∈ Abel ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
| 15 | 4, 10, 11, 14 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
| 17 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod) |
| 18 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 19 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈) | |
| 20 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
| 21 | 13, 8 | lssvsubcl 20872 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈 ∧ 𝑋 ∈ 𝑈)) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
| 22 | 17, 18, 19, 20, 21 | syl22anc 838 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
| 23 | 16, 22 | eqeltrrd 2832 | . 2 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌 ∈ 𝑈) |
| 24 | 1, 23 | mtand 815 | 1 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 -gcsg 18843 Abelcabl 19688 LModclmod 20788 LSubSpclss 20859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-cmn 19689 df-abl 19690 df-mgp 20054 df-ur 20095 df-ring 20148 df-lmod 20790 df-lss 20860 |
| This theorem is referenced by: lssvancl2 20874 dvh3dim2 41487 dvh3dim3N 41488 hdmap11lem2 41881 |
| Copyright terms: Public domain | W3C validator |