MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvancl1 Structured version   Visualization version   GIF version

Theorem lssvancl1 20187
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 20379. Can it be used along with lspsnne1 20360, lspsnne2 20361 to shorten this proof? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lssvancl.v 𝑉 = (Base‘𝑊)
lssvancl.p + = (+g𝑊)
lssvancl.s 𝑆 = (LSubSp‘𝑊)
lssvancl.w (𝜑𝑊 ∈ LMod)
lssvancl.u (𝜑𝑈𝑆)
lssvancl.x (𝜑𝑋𝑈)
lssvancl.y (𝜑𝑌𝑉)
lssvancl.n (𝜑 → ¬ 𝑌𝑈)
Assertion
Ref Expression
lssvancl1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)

Proof of Theorem lssvancl1
StepHypRef Expression
1 lssvancl.n . 2 (𝜑 → ¬ 𝑌𝑈)
2 lssvancl.w . . . . . 6 (𝜑𝑊 ∈ LMod)
3 lmodabl 20151 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
42, 3syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
5 lssvancl.u . . . . . 6 (𝜑𝑈𝑆)
6 lssvancl.x . . . . . 6 (𝜑𝑋𝑈)
7 lssvancl.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lssvancl.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
97, 8lssel 20180 . . . . . 6 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
105, 6, 9syl2anc 583 . . . . 5 (𝜑𝑋𝑉)
11 lssvancl.y . . . . 5 (𝜑𝑌𝑉)
12 lssvancl.p . . . . . 6 + = (+g𝑊)
13 eqid 2739 . . . . . 6 (-g𝑊) = (-g𝑊)
147, 12, 13ablpncan2 19398 . . . . 5 ((𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
154, 10, 11, 14syl3anc 1369 . . . 4 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
1615adantr 480 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
172adantr 480 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod)
185adantr 480 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈𝑆)
19 simpr 484 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈)
206adantr 480 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋𝑈)
2113, 8lssvsubcl 20186 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈𝑋𝑈)) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2217, 18, 19, 20, 21syl22anc 835 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2316, 22eqeltrrd 2841 . 2 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌𝑈)
241, 23mtand 812 1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  Basecbs 16893  +gcplusg 16943  -gcsg 18560  Abelcabl 19368  LModclmod 20104  LSubSpclss 20174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-0g 17133  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562  df-sbg 18563  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-lmod 20106  df-lss 20175
This theorem is referenced by:  lssvancl2  20188  dvh3dim2  39441  dvh3dim3N  39442  hdmap11lem2  39835
  Copyright terms: Public domain W3C validator