MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvancl1 Structured version   Visualization version   GIF version

Theorem lssvancl1 20873
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 21068. Can it be used along with lspsnne1 21049, lspsnne2 21050 to shorten this proof? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lssvancl.v 𝑉 = (Base‘𝑊)
lssvancl.p + = (+g𝑊)
lssvancl.s 𝑆 = (LSubSp‘𝑊)
lssvancl.w (𝜑𝑊 ∈ LMod)
lssvancl.u (𝜑𝑈𝑆)
lssvancl.x (𝜑𝑋𝑈)
lssvancl.y (𝜑𝑌𝑉)
lssvancl.n (𝜑 → ¬ 𝑌𝑈)
Assertion
Ref Expression
lssvancl1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)

Proof of Theorem lssvancl1
StepHypRef Expression
1 lssvancl.n . 2 (𝜑 → ¬ 𝑌𝑈)
2 lssvancl.w . . . . . 6 (𝜑𝑊 ∈ LMod)
3 lmodabl 20837 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
42, 3syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
5 lssvancl.u . . . . . 6 (𝜑𝑈𝑆)
6 lssvancl.x . . . . . 6 (𝜑𝑋𝑈)
7 lssvancl.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lssvancl.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
97, 8lssel 20865 . . . . . 6 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
105, 6, 9syl2anc 584 . . . . 5 (𝜑𝑋𝑉)
11 lssvancl.y . . . . 5 (𝜑𝑌𝑉)
12 lssvancl.p . . . . . 6 + = (+g𝑊)
13 eqid 2731 . . . . . 6 (-g𝑊) = (-g𝑊)
147, 12, 13ablpncan2 19722 . . . . 5 ((𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
154, 10, 11, 14syl3anc 1373 . . . 4 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
1615adantr 480 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
172adantr 480 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod)
185adantr 480 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈𝑆)
19 simpr 484 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈)
206adantr 480 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋𝑈)
2113, 8lssvsubcl 20872 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈𝑋𝑈)) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2217, 18, 19, 20, 21syl22anc 838 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2316, 22eqeltrrd 2832 . 2 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌𝑈)
241, 23mtand 815 1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  -gcsg 18843  Abelcabl 19688  LModclmod 20788  LSubSpclss 20859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19689  df-abl 19690  df-mgp 20054  df-ur 20095  df-ring 20148  df-lmod 20790  df-lss 20860
This theorem is referenced by:  lssvancl2  20874  dvh3dim2  41487  dvh3dim3N  41488  hdmap11lem2  41881
  Copyright terms: Public domain W3C validator