MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvancl1 Structured version   Visualization version   GIF version

Theorem lssvancl1 19719
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 19911. Can it be used along with lspsnne1 19892, lspsnne2 19893 to shorten this proof? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lssvancl.v 𝑉 = (Base‘𝑊)
lssvancl.p + = (+g𝑊)
lssvancl.s 𝑆 = (LSubSp‘𝑊)
lssvancl.w (𝜑𝑊 ∈ LMod)
lssvancl.u (𝜑𝑈𝑆)
lssvancl.x (𝜑𝑋𝑈)
lssvancl.y (𝜑𝑌𝑉)
lssvancl.n (𝜑 → ¬ 𝑌𝑈)
Assertion
Ref Expression
lssvancl1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)

Proof of Theorem lssvancl1
StepHypRef Expression
1 lssvancl.n . 2 (𝜑 → ¬ 𝑌𝑈)
2 lssvancl.w . . . . . 6 (𝜑𝑊 ∈ LMod)
3 lmodabl 19684 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
42, 3syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
5 lssvancl.u . . . . . 6 (𝜑𝑈𝑆)
6 lssvancl.x . . . . . 6 (𝜑𝑋𝑈)
7 lssvancl.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lssvancl.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
97, 8lssel 19712 . . . . . 6 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
105, 6, 9syl2anc 586 . . . . 5 (𝜑𝑋𝑉)
11 lssvancl.y . . . . 5 (𝜑𝑌𝑉)
12 lssvancl.p . . . . . 6 + = (+g𝑊)
13 eqid 2824 . . . . . 6 (-g𝑊) = (-g𝑊)
147, 12, 13ablpncan2 18939 . . . . 5 ((𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
154, 10, 11, 14syl3anc 1367 . . . 4 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
1615adantr 483 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
172adantr 483 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod)
185adantr 483 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈𝑆)
19 simpr 487 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈)
206adantr 483 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋𝑈)
2113, 8lssvsubcl 19718 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈𝑋𝑈)) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2217, 18, 19, 20, 21syl22anc 836 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2316, 22eqeltrrd 2917 . 2 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌𝑈)
241, 23mtand 814 1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  cfv 6358  (class class class)co 7159  Basecbs 16486  +gcplusg 16568  -gcsg 18108  Abelcabl 18910  LModclmod 19637  LSubSpclss 19706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-plusg 16581  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-lmod 19639  df-lss 19707
This theorem is referenced by:  lssvancl2  19720  dvh3dim2  38588  dvh3dim3N  38589  hdmap11lem2  38982
  Copyright terms: Public domain W3C validator