Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvancl1 Structured version   Visualization version   GIF version

Theorem lssvancl1 19716
 Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 19908. Can it be used along with lspsnne1 19889, lspsnne2 19890 to shorten this proof? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lssvancl.v 𝑉 = (Base‘𝑊)
lssvancl.p + = (+g𝑊)
lssvancl.s 𝑆 = (LSubSp‘𝑊)
lssvancl.w (𝜑𝑊 ∈ LMod)
lssvancl.u (𝜑𝑈𝑆)
lssvancl.x (𝜑𝑋𝑈)
lssvancl.y (𝜑𝑌𝑉)
lssvancl.n (𝜑 → ¬ 𝑌𝑈)
Assertion
Ref Expression
lssvancl1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)

Proof of Theorem lssvancl1
StepHypRef Expression
1 lssvancl.n . 2 (𝜑 → ¬ 𝑌𝑈)
2 lssvancl.w . . . . . 6 (𝜑𝑊 ∈ LMod)
3 lmodabl 19681 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
42, 3syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
5 lssvancl.u . . . . . 6 (𝜑𝑈𝑆)
6 lssvancl.x . . . . . 6 (𝜑𝑋𝑈)
7 lssvancl.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lssvancl.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
97, 8lssel 19709 . . . . . 6 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
105, 6, 9syl2anc 587 . . . . 5 (𝜑𝑋𝑉)
11 lssvancl.y . . . . 5 (𝜑𝑌𝑉)
12 lssvancl.p . . . . . 6 + = (+g𝑊)
13 eqid 2824 . . . . . 6 (-g𝑊) = (-g𝑊)
147, 12, 13ablpncan2 18936 . . . . 5 ((𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
154, 10, 11, 14syl3anc 1368 . . . 4 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
1615adantr 484 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
172adantr 484 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod)
185adantr 484 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈𝑆)
19 simpr 488 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈)
206adantr 484 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋𝑈)
2113, 8lssvsubcl 19715 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈𝑋𝑈)) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2217, 18, 19, 20, 21syl22anc 837 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2316, 22eqeltrrd 2917 . 2 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌𝑈)
241, 23mtand 815 1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ‘cfv 6343  (class class class)co 7149  Basecbs 16483  +gcplusg 16565  -gcsg 18105  Abelcabl 18907  LModclmod 19634  LSubSpclss 19703 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636  df-lss 19704 This theorem is referenced by:  lssvancl2  19717  dvh3dim2  38689  dvh3dim3N  38690  hdmap11lem2  39083
 Copyright terms: Public domain W3C validator