![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssvancl1 | Structured version Visualization version GIF version |
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 20741. Can it be used along with lspsnne1 20722, lspsnne2 20723 to shorten this proof? (Contributed by NM, 14-May-2015.) |
Ref | Expression |
---|---|
lssvancl.v | ⊢ 𝑉 = (Base‘𝑊) |
lssvancl.p | ⊢ + = (+g‘𝑊) |
lssvancl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssvancl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssvancl.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lssvancl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lssvancl.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lssvancl.n | ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) |
Ref | Expression |
---|---|
lssvancl1 | ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssvancl.n | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) | |
2 | lssvancl.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lmodabl 20511 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
5 | lssvancl.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
6 | lssvancl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
7 | lssvancl.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lssvancl.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
9 | 7, 8 | lssel 20540 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
10 | 5, 6, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
11 | lssvancl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
12 | lssvancl.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
13 | eqid 2732 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
14 | 7, 12, 13 | ablpncan2 19677 | . . . . 5 ⊢ ((𝑊 ∈ Abel ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
15 | 4, 10, 11, 14 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
16 | 15 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
17 | 2 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod) |
18 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈 ∈ 𝑆) |
19 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈) | |
20 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
21 | 13, 8 | lssvsubcl 20546 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈 ∧ 𝑋 ∈ 𝑈)) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
22 | 17, 18, 19, 20, 21 | syl22anc 837 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
23 | 16, 22 | eqeltrrd 2834 | . 2 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌 ∈ 𝑈) |
24 | 1, 23 | mtand 814 | 1 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 -gcsg 18817 Abelcabl 19643 LModclmod 20463 LSubSpclss 20534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-lmod 20465 df-lss 20535 |
This theorem is referenced by: lssvancl2 20548 dvh3dim2 40307 dvh3dim3N 40308 hdmap11lem2 40701 |
Copyright terms: Public domain | W3C validator |