![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4sqlem1 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 16966. The set 𝑆 is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that 𝑆 = ℕ0; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
4sq.1 | ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
Ref | Expression |
---|---|
4sqlem1 | ⊢ 𝑆 ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sq.1 | . 2 ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} | |
2 | zsqcl2 14157 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0) | |
3 | zsqcl2 14157 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0) | |
4 | nn0addcl 12559 | . . . . . . . 8 ⊢ (((𝑥↑2) ∈ ℕ0 ∧ (𝑦↑2) ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0) | |
5 | 2, 3, 4 | syl2an 594 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0) |
6 | zsqcl2 14157 | . . . . . . . 8 ⊢ (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℕ0) | |
7 | zsqcl2 14157 | . . . . . . . 8 ⊢ (𝑤 ∈ ℤ → (𝑤↑2) ∈ ℕ0) | |
8 | nn0addcl 12559 | . . . . . . . 8 ⊢ (((𝑧↑2) ∈ ℕ0 ∧ (𝑤↑2) ∈ ℕ0) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) | |
9 | 6, 7, 8 | syl2an 594 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) |
10 | nn0addcl 12559 | . . . . . . 7 ⊢ ((((𝑥↑2) + (𝑦↑2)) ∈ ℕ0 ∧ ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0) | |
11 | 5, 9, 10 | syl2an 594 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0) |
12 | eleq1a 2821 | . . . . . 6 ⊢ ((((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0 → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0)) |
14 | 13 | rexlimdvva 3202 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0)) |
15 | 14 | rexlimivv 3190 | . . 3 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0) |
16 | 15 | abssi 4066 | . 2 ⊢ {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⊆ ℕ0 |
17 | 1, 16 | eqsstri 4014 | 1 ⊢ 𝑆 ⊆ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∃wrex 3060 ⊆ wss 3947 (class class class)co 7424 + caddc 11161 2c2 12319 ℕ0cn0 12524 ℤcz 12610 ↑cexp 14081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-seq 14022 df-exp 14082 |
This theorem is referenced by: 4sqlem19 16965 |
Copyright terms: Public domain | W3C validator |