MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem1 Structured version   Visualization version   GIF version

Theorem 4sqlem1 16925
Description: Lemma for 4sq 16941. The set 𝑆 is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that 𝑆 = ℕ0; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem1 𝑆 ⊆ ℕ0
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑆,𝑛
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem1
StepHypRef Expression
1 4sq.1 . 2 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
2 zsqcl2 14109 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
3 zsqcl2 14109 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
4 nn0addcl 12483 . . . . . . . 8 (((𝑥↑2) ∈ ℕ0 ∧ (𝑦↑2) ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
52, 3, 4syl2an 596 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
6 zsqcl2 14109 . . . . . . . 8 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℕ0)
7 zsqcl2 14109 . . . . . . . 8 (𝑤 ∈ ℤ → (𝑤↑2) ∈ ℕ0)
8 nn0addcl 12483 . . . . . . . 8 (((𝑧↑2) ∈ ℕ0 ∧ (𝑤↑2) ∈ ℕ0) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
96, 7, 8syl2an 596 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
10 nn0addcl 12483 . . . . . . 7 ((((𝑥↑2) + (𝑦↑2)) ∈ ℕ0 ∧ ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
115, 9, 10syl2an 596 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
12 eleq1a 2824 . . . . . 6 ((((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0 → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0))
1311, 12syl 17 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0))
1413rexlimdvva 3195 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0))
1514rexlimivv 3180 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0)
1615abssi 4035 . 2 {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⊆ ℕ0
171, 16eqsstri 3995 1 𝑆 ⊆ ℕ0
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  wss 3916  (class class class)co 7389   + caddc 11077  2c2 12242  0cn0 12448  cz 12535  cexp 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-seq 13973  df-exp 14033
This theorem is referenced by:  4sqlem19  16940
  Copyright terms: Public domain W3C validator