| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4sqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 4sq 16941. The set 𝑆 is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that 𝑆 = ℕ0; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| 4sq.1 | ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
| Ref | Expression |
|---|---|
| 4sqlem1 | ⊢ 𝑆 ⊆ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | . 2 ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} | |
| 2 | zsqcl2 14109 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0) | |
| 3 | zsqcl2 14109 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0) | |
| 4 | nn0addcl 12483 | . . . . . . . 8 ⊢ (((𝑥↑2) ∈ ℕ0 ∧ (𝑦↑2) ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0) | |
| 5 | 2, 3, 4 | syl2an 596 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0) |
| 6 | zsqcl2 14109 | . . . . . . . 8 ⊢ (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℕ0) | |
| 7 | zsqcl2 14109 | . . . . . . . 8 ⊢ (𝑤 ∈ ℤ → (𝑤↑2) ∈ ℕ0) | |
| 8 | nn0addcl 12483 | . . . . . . . 8 ⊢ (((𝑧↑2) ∈ ℕ0 ∧ (𝑤↑2) ∈ ℕ0) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) |
| 10 | nn0addcl 12483 | . . . . . . 7 ⊢ ((((𝑥↑2) + (𝑦↑2)) ∈ ℕ0 ∧ ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0) | |
| 11 | 5, 9, 10 | syl2an 596 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0) |
| 12 | eleq1a 2824 | . . . . . 6 ⊢ ((((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0 → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0)) |
| 14 | 13 | rexlimdvva 3195 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0)) |
| 15 | 14 | rexlimivv 3180 | . . 3 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0) |
| 16 | 15 | abssi 4035 | . 2 ⊢ {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⊆ ℕ0 |
| 17 | 1, 16 | eqsstri 3995 | 1 ⊢ 𝑆 ⊆ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 ⊆ wss 3916 (class class class)co 7389 + caddc 11077 2c2 12242 ℕ0cn0 12448 ℤcz 12535 ↑cexp 14032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-seq 13973 df-exp 14033 |
| This theorem is referenced by: 4sqlem19 16940 |
| Copyright terms: Public domain | W3C validator |