| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2lcl | Structured version Visualization version GIF version | ||
| Description: The set of lower sums is a set of extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
| Ref | Expression |
|---|---|
| itg2lcl | ⊢ 𝐿 ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | . 2 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
| 2 | itg1cl 25614 | . . . . . 6 ⊢ (𝑔 ∈ dom ∫1 → (∫1‘𝑔) ∈ ℝ) | |
| 3 | 2 | rexrd 11162 | . . . . 5 ⊢ (𝑔 ∈ dom ∫1 → (∫1‘𝑔) ∈ ℝ*) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) → 𝑥 = (∫1‘𝑔)) | |
| 5 | 4 | eleq1d 2816 | . . . . 5 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) → (𝑥 ∈ ℝ* ↔ (∫1‘𝑔) ∈ ℝ*)) |
| 6 | 3, 5 | syl5ibrcom 247 | . . . 4 ⊢ (𝑔 ∈ dom ∫1 → ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) → 𝑥 ∈ ℝ*)) |
| 7 | 6 | rexlimiv 3126 | . . 3 ⊢ (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) → 𝑥 ∈ ℝ*) |
| 8 | 7 | abssi 4020 | . 2 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* |
| 9 | 1, 8 | eqsstri 3981 | 1 ⊢ 𝐿 ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 ∘r cofr 7609 ℝ*cxr 11145 ≤ cle 11147 ∫1citg1 25544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21285 df-met 21286 df-ovol 25393 df-vol 25394 df-mbf 25548 df-itg1 25549 |
| This theorem is referenced by: itg2cl 25661 itg2ub 25662 itg2leub 25663 |
| Copyright terms: Public domain | W3C validator |