MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem7 Structured version   Visualization version   GIF version

Theorem 2sqlem7 27392
Description: Lemma for 2sq 27398. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
Assertion
Ref Expression
2sqlem7 𝑌 ⊆ (𝑆 ∩ ℕ)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑆(𝑤)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem7
StepHypRef Expression
1 2sqlem7.2 . 2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2 simpr 484 . . . . . . 7 (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 = ((𝑥↑2) + (𝑦↑2)))
32reximi 3075 . . . . . 6 (∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑦 ∈ ℤ 𝑧 = ((𝑥↑2) + (𝑦↑2)))
43reximi 3075 . . . . 5 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝑥↑2) + (𝑦↑2)))
5 2sq.1 . . . . . 6 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
652sqlem2 27386 . . . . 5 (𝑧𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝑥↑2) + (𝑦↑2)))
74, 6sylibr 234 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧𝑆)
8 ax-1ne0 11203 . . . . . . . . . 10 1 ≠ 0
9 gcdeq0 16541 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
109adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
11 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑥 gcd 𝑦) = 1)
1211eqeq1d 2738 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥 gcd 𝑦) = 0 ↔ 1 = 0))
1310, 12bitr3d 281 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥 = 0 ∧ 𝑦 = 0) ↔ 1 = 0))
1413necon3bbid 2970 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (¬ (𝑥 = 0 ∧ 𝑦 = 0) ↔ 1 ≠ 0))
158, 14mpbiri 258 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ¬ (𝑥 = 0 ∧ 𝑦 = 0))
16 zsqcl2 14161 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
1716ad2antrr 726 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑥↑2) ∈ ℕ0)
1817nn0red 12568 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑥↑2) ∈ ℝ)
1917nn0ge0d 12570 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 0 ≤ (𝑥↑2))
20 zsqcl2 14161 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
2120ad2antlr 727 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑦↑2) ∈ ℕ0)
2221nn0red 12568 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑦↑2) ∈ ℝ)
2321nn0ge0d 12570 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 0 ≤ (𝑦↑2))
24 add20 11754 . . . . . . . . . . 11 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ ((𝑦↑2) ∈ ℝ ∧ 0 ≤ (𝑦↑2))) → (((𝑥↑2) + (𝑦↑2)) = 0 ↔ ((𝑥↑2) = 0 ∧ (𝑦↑2) = 0)))
2518, 19, 22, 23, 24syl22anc 838 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) + (𝑦↑2)) = 0 ↔ ((𝑥↑2) = 0 ∧ (𝑦↑2) = 0)))
26 zcn 12598 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2726ad2antrr 726 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 𝑥 ∈ ℂ)
28 zcn 12598 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
2928ad2antlr 727 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 𝑦 ∈ ℂ)
30 sqeq0 14143 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ((𝑥↑2) = 0 ↔ 𝑥 = 0))
31 sqeq0 14143 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 ↔ 𝑦 = 0))
3230, 31bi2anan9 638 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥↑2) = 0 ∧ (𝑦↑2) = 0) ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
3327, 29, 32syl2anc 584 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) = 0 ∧ (𝑦↑2) = 0) ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
3425, 33bitrd 279 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) + (𝑦↑2)) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
3515, 34mtbird 325 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ¬ ((𝑥↑2) + (𝑦↑2)) = 0)
36 nn0addcl 12541 . . . . . . . . . . . 12 (((𝑥↑2) ∈ ℕ0 ∧ (𝑦↑2) ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
3716, 20, 36syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
3837adantr 480 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
39 elnn0 12508 . . . . . . . . . 10 (((𝑥↑2) + (𝑦↑2)) ∈ ℕ0 ↔ (((𝑥↑2) + (𝑦↑2)) ∈ ℕ ∨ ((𝑥↑2) + (𝑦↑2)) = 0))
4038, 39sylib 218 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) + (𝑦↑2)) ∈ ℕ ∨ ((𝑥↑2) + (𝑦↑2)) = 0))
4140ord 864 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (¬ ((𝑥↑2) + (𝑦↑2)) ∈ ℕ → ((𝑥↑2) + (𝑦↑2)) = 0))
4235, 41mt3d 148 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ)
43 eleq1 2823 . . . . . . 7 (𝑧 = ((𝑥↑2) + (𝑦↑2)) → (𝑧 ∈ ℕ ↔ ((𝑥↑2) + (𝑦↑2)) ∈ ℕ))
4442, 43syl5ibrcom 247 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) → 𝑧 ∈ ℕ))
4544expimpd 453 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 ∈ ℕ))
4645rexlimivv 3187 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 ∈ ℕ)
477, 46elind 4180 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 ∈ (𝑆 ∩ ℕ))
4847abssi 4050 . 2 {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⊆ (𝑆 ∩ ℕ)
491, 48eqsstri 4010 1 𝑌 ⊆ (𝑆 ∩ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2714  wne 2933  wrex 3061  cin 3930  wss 3931   class class class wbr 5124  cmpt 5206  ran crn 5660  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  cn 12245  2c2 12300  0cn0 12506  cz 12593  cexp 14084  abscabs 15258   gcd cgcd 16518  ℤ[i]cgz 16954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-gz 16955
This theorem is referenced by:  2sqlem8  27394  2sqlem9  27395
  Copyright terms: Public domain W3C validator