| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > blssp | Structured version Visualization version GIF version | ||
| Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.) |
| Ref | Expression |
|---|---|
| blssp.2 | ⊢ 𝑁 = (𝑀 ↾ (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| blssp | ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metxmet 24250 | . . 3 ⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) | |
| 2 | 1 | ad2antrr 726 | . 2 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋)) |
| 3 | simprl 770 | . . 3 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑌 ∈ 𝑆) | |
| 4 | simplr 768 | . . . 4 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑆 ⊆ 𝑋) | |
| 5 | sseqin2 4173 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∩ 𝑆) = 𝑆) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∩ 𝑆) = 𝑆) |
| 7 | 3, 6 | eleqtrrd 2834 | . 2 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑌 ∈ (𝑋 ∩ 𝑆)) |
| 8 | rpxr 12900 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
| 9 | 8 | ad2antll 729 | . 2 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑅 ∈ ℝ*) |
| 10 | blssp.2 | . . 3 ⊢ 𝑁 = (𝑀 ↾ (𝑆 × 𝑆)) | |
| 11 | 10 | blres 24347 | . 2 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋 ∩ 𝑆) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) |
| 12 | 2, 7, 9, 11 | syl3anc 1373 | 1 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 × cxp 5614 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 ℝ*cxr 11145 ℝ+crp 12890 ∞Metcxmet 21277 Metcmet 21278 ballcbl 21279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-rp 12891 df-xadd 13012 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 |
| This theorem is referenced by: bndss 37832 |
| Copyright terms: Public domain | W3C validator |