![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blssp | Structured version Visualization version GIF version |
Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.) |
Ref | Expression |
---|---|
blssp.2 | β’ π = (π βΎ (π Γ π)) |
Ref | Expression |
---|---|
blssp | β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β (π(ballβπ)π ) = ((π(ballβπ)π ) β© π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metxmet 23831 | . . 3 β’ (π β (Metβπ) β π β (βMetβπ)) | |
2 | 1 | ad2antrr 724 | . 2 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β (βMetβπ)) |
3 | simprl 769 | . . 3 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β π) | |
4 | simplr 767 | . . . 4 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β π) | |
5 | sseqin2 4214 | . . . 4 β’ (π β π β (π β© π) = π) | |
6 | 4, 5 | sylib 217 | . . 3 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β (π β© π) = π) |
7 | 3, 6 | eleqtrrd 2836 | . 2 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β (π β© π)) |
8 | rpxr 12979 | . . 3 β’ (π β β+ β π β β*) | |
9 | 8 | ad2antll 727 | . 2 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β β*) |
10 | blssp.2 | . . 3 β’ π = (π βΎ (π Γ π)) | |
11 | 10 | blres 23928 | . 2 β’ ((π β (βMetβπ) β§ π β (π β© π) β§ π β β*) β (π(ballβπ)π ) = ((π(ballβπ)π ) β© π)) |
12 | 2, 7, 9, 11 | syl3anc 1371 | 1 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β (π(ballβπ)π ) = ((π(ballβπ)π ) β© π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β© cin 3946 β wss 3947 Γ cxp 5673 βΎ cres 5677 βcfv 6540 (class class class)co 7405 β*cxr 11243 β+crp 12970 βMetcxmet 20921 Metcmet 20922 ballcbl 20923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-mulcl 11168 ax-i2m1 11174 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-rp 12971 df-xadd 13089 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 |
This theorem is referenced by: bndss 36642 |
Copyright terms: Public domain | W3C validator |