![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blssp | Structured version Visualization version GIF version |
Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.) |
Ref | Expression |
---|---|
blssp.2 | β’ π = (π βΎ (π Γ π)) |
Ref | Expression |
---|---|
blssp | β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β (π(ballβπ)π ) = ((π(ballβπ)π ) β© π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metxmet 24184 | . . 3 β’ (π β (Metβπ) β π β (βMetβπ)) | |
2 | 1 | ad2antrr 723 | . 2 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β (βMetβπ)) |
3 | simprl 768 | . . 3 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β π) | |
4 | simplr 766 | . . . 4 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β π) | |
5 | sseqin2 4208 | . . . 4 β’ (π β π β (π β© π) = π) | |
6 | 4, 5 | sylib 217 | . . 3 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β (π β© π) = π) |
7 | 3, 6 | eleqtrrd 2828 | . 2 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β (π β© π)) |
8 | rpxr 12984 | . . 3 β’ (π β β+ β π β β*) | |
9 | 8 | ad2antll 726 | . 2 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β β*) |
10 | blssp.2 | . . 3 β’ π = (π βΎ (π Γ π)) | |
11 | 10 | blres 24281 | . 2 β’ ((π β (βMetβπ) β§ π β (π β© π) β§ π β β*) β (π(ballβπ)π ) = ((π(ballβπ)π ) β© π)) |
12 | 2, 7, 9, 11 | syl3anc 1368 | 1 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β (π(ballβπ)π ) = ((π(ballβπ)π ) β© π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β© cin 3940 β wss 3941 Γ cxp 5665 βΎ cres 5669 βcfv 6534 (class class class)co 7402 β*cxr 11246 β+crp 12975 βMetcxmet 21219 Metcmet 21220 ballcbl 21221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-mulcl 11169 ax-i2m1 11175 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-rp 12976 df-xadd 13094 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 |
This theorem is referenced by: bndss 37157 |
Copyright terms: Public domain | W3C validator |