Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blssp Structured version   Visualization version   GIF version

Theorem blssp 37802
Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blssp.2 𝑁 = (𝑀 ↾ (𝑆 × 𝑆))
Assertion
Ref Expression
blssp (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))

Proof of Theorem blssp
StepHypRef Expression
1 metxmet 24250 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
21ad2antrr 726 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋))
3 simprl 770 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑌𝑆)
4 simplr 768 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑆𝑋)
5 sseqin2 4173 . . . 4 (𝑆𝑋 ↔ (𝑋𝑆) = 𝑆)
64, 5sylib 218 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑋𝑆) = 𝑆)
73, 6eleqtrrd 2834 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑌 ∈ (𝑋𝑆))
8 rpxr 12900 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
98ad2antll 729 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
10 blssp.2 . . 3 𝑁 = (𝑀 ↾ (𝑆 × 𝑆))
1110blres 24347 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋𝑆) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))
122, 7, 9, 11syl3anc 1373 1 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cin 3901  wss 3902   × cxp 5614  cres 5618  cfv 6481  (class class class)co 7346  *cxr 11145  +crp 12890  ∞Metcxmet 21277  Metcmet 21278  ballcbl 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-mulcl 11068  ax-i2m1 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-rp 12891  df-xadd 13012  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287
This theorem is referenced by:  bndss  37832
  Copyright terms: Public domain W3C validator