![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blssp | Structured version Visualization version GIF version |
Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.) |
Ref | Expression |
---|---|
blssp.2 | ⊢ 𝑁 = (𝑀 ↾ (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
blssp | ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metxmet 24328 | . . 3 ⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) | |
2 | 1 | ad2antrr 724 | . 2 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋)) |
3 | simprl 769 | . . 3 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑌 ∈ 𝑆) | |
4 | simplr 767 | . . . 4 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑆 ⊆ 𝑋) | |
5 | sseqin2 4213 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∩ 𝑆) = 𝑆) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∩ 𝑆) = 𝑆) |
7 | 3, 6 | eleqtrrd 2829 | . 2 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑌 ∈ (𝑋 ∩ 𝑆)) |
8 | rpxr 13031 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
9 | 8 | ad2antll 727 | . 2 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑅 ∈ ℝ*) |
10 | blssp.2 | . . 3 ⊢ 𝑁 = (𝑀 ↾ (𝑆 × 𝑆)) | |
11 | 10 | blres 24425 | . 2 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋 ∩ 𝑆) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) |
12 | 2, 7, 9, 11 | syl3anc 1368 | 1 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∩ cin 3945 ⊆ wss 3946 × cxp 5672 ↾ cres 5676 ‘cfv 6546 (class class class)co 7416 ℝ*cxr 11288 ℝ+crp 13022 ∞Metcxmet 21324 Metcmet 21325 ballcbl 21326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-mulcl 11211 ax-i2m1 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-rp 13023 df-xadd 13141 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 |
This theorem is referenced by: bndss 37500 |
Copyright terms: Public domain | W3C validator |