![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blssp | Structured version Visualization version GIF version |
Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.) |
Ref | Expression |
---|---|
blssp.2 | β’ π = (π βΎ (π Γ π)) |
Ref | Expression |
---|---|
blssp | β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β (π(ballβπ)π ) = ((π(ballβπ)π ) β© π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metxmet 24239 | . . 3 β’ (π β (Metβπ) β π β (βMetβπ)) | |
2 | 1 | ad2antrr 725 | . 2 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β (βMetβπ)) |
3 | simprl 770 | . . 3 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β π) | |
4 | simplr 768 | . . . 4 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β π) | |
5 | sseqin2 4215 | . . . 4 β’ (π β π β (π β© π) = π) | |
6 | 4, 5 | sylib 217 | . . 3 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β (π β© π) = π) |
7 | 3, 6 | eleqtrrd 2832 | . 2 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β (π β© π)) |
8 | rpxr 13015 | . . 3 β’ (π β β+ β π β β*) | |
9 | 8 | ad2antll 728 | . 2 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β π β β*) |
10 | blssp.2 | . . 3 β’ π = (π βΎ (π Γ π)) | |
11 | 10 | blres 24336 | . 2 β’ ((π β (βMetβπ) β§ π β (π β© π) β§ π β β*) β (π(ballβπ)π ) = ((π(ballβπ)π ) β© π)) |
12 | 2, 7, 9, 11 | syl3anc 1369 | 1 β’ (((π β (Metβπ) β§ π β π) β§ (π β π β§ π β β+)) β (π(ballβπ)π ) = ((π(ballβπ)π ) β© π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β© cin 3946 β wss 3947 Γ cxp 5676 βΎ cres 5680 βcfv 6548 (class class class)co 7420 β*cxr 11277 β+crp 13006 βMetcxmet 21263 Metcmet 21264 ballcbl 21265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-mulcl 11200 ax-i2m1 11206 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-rp 13007 df-xadd 13125 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 |
This theorem is referenced by: bndss 37259 |
Copyright terms: Public domain | W3C validator |