Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blssp Structured version   Visualization version   GIF version

Theorem blssp 37470
Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blssp.2 𝑁 = (𝑀 ↾ (𝑆 × 𝑆))
Assertion
Ref Expression
blssp (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))

Proof of Theorem blssp
StepHypRef Expression
1 metxmet 24328 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
21ad2antrr 724 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋))
3 simprl 769 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑌𝑆)
4 simplr 767 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑆𝑋)
5 sseqin2 4213 . . . 4 (𝑆𝑋 ↔ (𝑋𝑆) = 𝑆)
64, 5sylib 217 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑋𝑆) = 𝑆)
73, 6eleqtrrd 2829 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑌 ∈ (𝑋𝑆))
8 rpxr 13031 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
98ad2antll 727 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
10 blssp.2 . . 3 𝑁 = (𝑀 ↾ (𝑆 × 𝑆))
1110blres 24425 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋𝑆) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))
122, 7, 9, 11syl3anc 1368 1 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cin 3945  wss 3946   × cxp 5672  cres 5676  cfv 6546  (class class class)co 7416  *cxr 11288  +crp 13022  ∞Metcxmet 21324  Metcmet 21325  ballcbl 21326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-mulcl 11211  ax-i2m1 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-rp 13023  df-xadd 13141  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334
This theorem is referenced by:  bndss  37500
  Copyright terms: Public domain W3C validator