| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > blssp | Structured version Visualization version GIF version | ||
| Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.) |
| Ref | Expression |
|---|---|
| blssp.2 | ⊢ 𝑁 = (𝑀 ↾ (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| blssp | ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metxmet 24222 | . . 3 ⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) | |
| 2 | 1 | ad2antrr 726 | . 2 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋)) |
| 3 | simprl 770 | . . 3 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑌 ∈ 𝑆) | |
| 4 | simplr 768 | . . . 4 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑆 ⊆ 𝑋) | |
| 5 | sseqin2 4186 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∩ 𝑆) = 𝑆) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∩ 𝑆) = 𝑆) |
| 7 | 3, 6 | eleqtrrd 2831 | . 2 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑌 ∈ (𝑋 ∩ 𝑆)) |
| 8 | rpxr 12961 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
| 9 | 8 | ad2antll 729 | . 2 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → 𝑅 ∈ ℝ*) |
| 10 | blssp.2 | . . 3 ⊢ 𝑁 = (𝑀 ↾ (𝑆 × 𝑆)) | |
| 11 | 10 | blres 24319 | . 2 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋 ∩ 𝑆) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) |
| 12 | 2, 7, 9, 11 | syl3anc 1373 | 1 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑌 ∈ 𝑆 ∧ 𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 ℝ*cxr 11207 ℝ+crp 12951 ∞Metcxmet 21249 Metcmet 21250 ballcbl 21251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-rp 12952 df-xadd 13073 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 |
| This theorem is referenced by: bndss 37780 |
| Copyright terms: Public domain | W3C validator |