Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mettrifi Structured version   Visualization version   GIF version

Theorem mettrifi 35509
 Description: Generalized triangle inequality for arbitrary finite sums. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
mettrifi.2 (𝜑𝐷 ∈ (Met‘𝑋))
mettrifi.3 (𝜑𝑁 ∈ (ℤ𝑀))
mettrifi.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑋)
Assertion
Ref Expression
mettrifi (𝜑 → ((𝐹𝑀)𝐷(𝐹𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋

Proof of Theorem mettrifi
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mettrifi.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12977 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2839 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 6663 . . . . . . . 8 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
65oveq2d 7172 . . . . . . 7 (𝑥 = 𝑀 → ((𝐹𝑀)𝐷(𝐹𝑥)) = ((𝐹𝑀)𝐷(𝐹𝑀)))
7 oveq1 7163 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑥 − 1) = (𝑀 − 1))
87oveq2d 7172 . . . . . . . 8 (𝑥 = 𝑀 → (𝑀...(𝑥 − 1)) = (𝑀...(𝑀 − 1)))
98sumeq1d 15119 . . . . . . 7 (𝑥 = 𝑀 → Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
106, 9breq12d 5049 . . . . . 6 (𝑥 = 𝑀 → (((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹𝑀)𝐷(𝐹𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
114, 10imbi12d 348 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) ↔ (𝑀 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
1211imbi2d 344 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))))
13 eleq1 2839 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
14 fveq2 6663 . . . . . . . 8 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1514oveq2d 7172 . . . . . . 7 (𝑥 = 𝑛 → ((𝐹𝑀)𝐷(𝐹𝑥)) = ((𝐹𝑀)𝐷(𝐹𝑛)))
16 oveq1 7163 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑥 − 1) = (𝑛 − 1))
1716oveq2d 7172 . . . . . . . 8 (𝑥 = 𝑛 → (𝑀...(𝑥 − 1)) = (𝑀...(𝑛 − 1)))
1817sumeq1d 15119 . . . . . . 7 (𝑥 = 𝑛 → Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
1915, 18breq12d 5049 . . . . . 6 (𝑥 = 𝑛 → (((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
2013, 19imbi12d 348 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) ↔ (𝑛 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
2120imbi2d 344 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))))
22 eleq1 2839 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
23 fveq2 6663 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
2423oveq2d 7172 . . . . . . 7 (𝑥 = (𝑛 + 1) → ((𝐹𝑀)𝐷(𝐹𝑥)) = ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))))
25 oveq1 7163 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑥 − 1) = ((𝑛 + 1) − 1))
2625oveq2d 7172 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑀...(𝑥 − 1)) = (𝑀...((𝑛 + 1) − 1)))
2726sumeq1d 15119 . . . . . . 7 (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
2824, 27breq12d 5049 . . . . . 6 (𝑥 = (𝑛 + 1) → (((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
2922, 28imbi12d 348 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
3029imbi2d 344 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))))
31 eleq1 2839 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
32 fveq2 6663 . . . . . . . 8 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
3332oveq2d 7172 . . . . . . 7 (𝑥 = 𝑁 → ((𝐹𝑀)𝐷(𝐹𝑥)) = ((𝐹𝑀)𝐷(𝐹𝑁)))
34 oveq1 7163 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1))
3534oveq2d 7172 . . . . . . . 8 (𝑥 = 𝑁 → (𝑀...(𝑥 − 1)) = (𝑀...(𝑁 − 1)))
3635sumeq1d 15119 . . . . . . 7 (𝑥 = 𝑁 → Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
3733, 36breq12d 5049 . . . . . 6 (𝑥 = 𝑁 → (((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹𝑀)𝐷(𝐹𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
3831, 37imbi12d 348 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) ↔ (𝑁 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
3938imbi2d 344 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))))
40 0le0 11788 . . . . . . . 8 0 ≤ 0
4140a1i 11 . . . . . . 7 (𝜑 → 0 ≤ 0)
42 mettrifi.2 . . . . . . . 8 (𝜑𝐷 ∈ (Met‘𝑋))
43 eluzfz1 12976 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
441, 43syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (𝑀...𝑁))
45 mettrifi.4 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑋)
4645ralrimiva 3113 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ 𝑋)
47 fveq2 6663 . . . . . . . . . . 11 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
4847eleq1d 2836 . . . . . . . . . 10 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑀) ∈ 𝑋))
4948rspcv 3538 . . . . . . . . 9 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ 𝑋 → (𝐹𝑀) ∈ 𝑋))
5044, 46, 49sylc 65 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ 𝑋)
51 met0 23058 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑀) ∈ 𝑋) → ((𝐹𝑀)𝐷(𝐹𝑀)) = 0)
5242, 50, 51syl2anc 587 . . . . . . 7 (𝜑 → ((𝐹𝑀)𝐷(𝐹𝑀)) = 0)
53 eluzel2 12300 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
541, 53syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
5554zred 12139 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
5655ltm1d 11623 . . . . . . . . . 10 (𝜑 → (𝑀 − 1) < 𝑀)
57 peano2zm 12077 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
58 fzn 12985 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
5954, 57, 58syl2anc2 588 . . . . . . . . . 10 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
6056, 59mpbid 235 . . . . . . . . 9 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
6160sumeq1d 15119 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ ∅ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
62 sum0 15139 . . . . . . . 8 Σ𝑘 ∈ ∅ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = 0
6361, 62eqtrdi 2809 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = 0)
6441, 52, 633brtr4d 5068 . . . . . 6 (𝜑 → ((𝐹𝑀)𝐷(𝐹𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
6564a1d 25 . . . . 5 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
6665a1i 11 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
67 peano2fzr 12982 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
6867ex 416 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
6968adantl 485 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
7069imim1d 82 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
71423ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝐷 ∈ (Met‘𝑋))
72503ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹𝑀) ∈ 𝑋)
73 simp3 1135 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁))
74463ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ 𝑋)
75 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
7675eleq1d 2836 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑋))
7776rspcv 3538 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ 𝑋 → (𝐹‘(𝑛 + 1)) ∈ 𝑋))
7873, 74, 77sylc 65 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑋)
79 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8079eleq1d 2836 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑛) ∈ 𝑋))
8180cbvralvw 3361 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ∈ 𝑋)
8274, 81sylib 221 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ∀𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ∈ 𝑋)
83693impia 1114 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
84 rsp 3134 . . . . . . . . . . . . 13 (∀𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ∈ 𝑋 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑛) ∈ 𝑋))
8582, 83, 84sylc 65 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹𝑛) ∈ 𝑋)
86 mettri 23067 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹𝑀) ∈ 𝑋 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋)) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))))
8771, 72, 78, 85, 86syl13anc 1369 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))))
88 metcl 23047 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑀) ∈ 𝑋 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑋) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ)
8971, 72, 78, 88syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ)
90 metcl 23047 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑀) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹𝑀)𝐷(𝐹𝑛)) ∈ ℝ)
9171, 72, 85, 90syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝐹𝑀)𝐷(𝐹𝑛)) ∈ ℝ)
92 metcl 23047 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑛) ∈ 𝑋 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑋) → ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ)
9371, 85, 78, 92syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ)
9491, 93readdcld 10721 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ∈ ℝ)
95 fzfid 13403 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...𝑛) ∈ Fin)
9671adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐷 ∈ (Met‘𝑋))
97 elfzuz3 12966 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
9883, 97syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑛))
99 fzss2 13009 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
10098, 99syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
101100sselda 3894 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁))
102453ad2antl1 1182 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑋)
103101, 102syldan 594 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ 𝑋)
104 elfzuz 12965 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
105104adantl 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (ℤ𝑀))
106 peano2uz 12354 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
107105, 106syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝑘 + 1) ∈ (ℤ𝑀))
108 elfzuz3 12966 . . . . . . . . . . . . . . . . . . 19 ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
10973, 108syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
110109adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
111 elfzuz3 12966 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝑀...𝑛) → 𝑛 ∈ (ℤ𝑘))
112111adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑛 ∈ (ℤ𝑘))
113 eluzp1p1 12323 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ𝑘) → (𝑛 + 1) ∈ (ℤ‘(𝑘 + 1)))
114112, 113syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝑛 + 1) ∈ (ℤ‘(𝑘 + 1)))
115 uztrn 12313 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘(𝑛 + 1)) ∧ (𝑛 + 1) ∈ (ℤ‘(𝑘 + 1))) → 𝑁 ∈ (ℤ‘(𝑘 + 1)))
116110, 114, 115syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑁 ∈ (ℤ‘(𝑘 + 1)))
117 elfzuzb 12963 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ (𝑀...𝑁) ↔ ((𝑘 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))))
118107, 116, 117sylanbrc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝑘 + 1) ∈ (𝑀...𝑁))
119 fveq2 6663 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
120119eleq1d 2836 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ 𝑋 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑋))
121120rspccva 3542 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ∈ 𝑋 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
12282, 121sylan 583 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
123118, 122syldan 594 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
124 metcl 23047 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
12596, 103, 123, 124syl3anc 1368 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
12695, 125fsumrecl 15152 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
127 letr 10785 . . . . . . . . . . . 12 ((((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ ∧ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ∈ ℝ ∧ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) → ((((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ∧ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
12889, 94, 126, 127syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ∧ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
12987, 128mpand 694 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
130 fzfid 13403 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...(𝑛 − 1)) ∈ Fin)
131 fzssp1 13012 . . . . . . . . . . . . . . . 16 (𝑀...(𝑛 − 1)) ⊆ (𝑀...((𝑛 − 1) + 1))
132 eluzelz 12305 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
1331323ad2ant2 1131 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ ℤ)
134133zcnd 12140 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ ℂ)
135 ax-1cn 10646 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
136 npcan 10946 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
137134, 135, 136sylancl 589 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝑛 − 1) + 1) = 𝑛)
138137oveq2d 7172 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...((𝑛 − 1) + 1)) = (𝑀...𝑛))
139131, 138sseqtrid 3946 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...(𝑛 − 1)) ⊆ (𝑀...𝑛))
140139sselda 3894 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑛 − 1))) → 𝑘 ∈ (𝑀...𝑛))
141140, 125syldan 594 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
142130, 141fsumrecl 15152 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
14391, 142, 93leadd1d 11285 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ (Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1))))))
144 simp2 1134 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (ℤ𝑀))
145125recnd 10720 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℂ)
146 fvoveq1 7179 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
14779, 146oveq12d 7174 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1))))
148144, 145, 147fsumm1 15167 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = (Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))))
149148breq2d 5048 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ (Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1))))))
150143, 149bitr4d 285 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ (((𝐹𝑀)𝐷(𝐹𝑛)) + ((𝐹𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
151 pncan 10943 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
152134, 135, 151sylancl 589 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝑛 + 1) − 1) = 𝑛)
153152oveq2d 7172 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...((𝑛 + 1) − 1)) = (𝑀...𝑛))
154153sumeq1d 15119 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
155154breq2d 5048 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
156129, 150, 1553imtr4d 297 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
1571563expia 1118 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
158157a2d 29 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
15970, 158syld 47 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
160159expcom 417 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))))
161160a2d 29 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))))
16212, 21, 30, 39, 66, 161uzind4 12359 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))))
1631, 162mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → ((𝐹𝑀)𝐷(𝐹𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1)))))
1643, 163mpd 15 1 (𝜑 → ((𝐹𝑀)𝐷(𝐹𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070   ⊆ wss 3860  ∅c0 4227   class class class wbr 5036  ‘cfv 6340  (class class class)co 7156  ℂcc 10586  ℝcr 10587  0cc0 10588  1c1 10589   + caddc 10591   < clt 10726   ≤ cle 10727   − cmin 10921  ℤcz 12033  ℤ≥cuz 12295  ...cfz 12952  Σcsu 15103  Metcmet 20165 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-xadd 12562  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906  df-sum 15104  df-xmet 20172  df-met 20173 This theorem is referenced by:  geomcau  35511
 Copyright terms: Public domain W3C validator