Step | Hyp | Ref
| Expression |
1 | | mettrifi.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 12977 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | eleq1 2839 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁))) |
5 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) |
6 | 5 | oveq2d 7172 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) = ((𝐹‘𝑀)𝐷(𝐹‘𝑀))) |
7 | | oveq1 7163 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (𝑥 − 1) = (𝑀 − 1)) |
8 | 7 | oveq2d 7172 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (𝑀...(𝑥 − 1)) = (𝑀...(𝑀 − 1))) |
9 | 8 | sumeq1d 15119 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
10 | 6, 9 | breq12d 5049 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹‘𝑀)𝐷(𝐹‘𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
11 | 4, 10 | imbi12d 348 |
. . . . 5
⊢ (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) ↔ (𝑀 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
12 | 11 | imbi2d 344 |
. . . 4
⊢ (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))))) |
13 | | eleq1 2839 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) |
14 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → (𝐹‘𝑥) = (𝐹‘𝑛)) |
15 | 14 | oveq2d 7172 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) = ((𝐹‘𝑀)𝐷(𝐹‘𝑛))) |
16 | | oveq1 7163 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑥 − 1) = (𝑛 − 1)) |
17 | 16 | oveq2d 7172 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → (𝑀...(𝑥 − 1)) = (𝑀...(𝑛 − 1))) |
18 | 17 | sumeq1d 15119 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
19 | 15, 18 | breq12d 5049 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
20 | 13, 19 | imbi12d 348 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) ↔ (𝑛 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
21 | 20 | imbi2d 344 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))))) |
22 | | eleq1 2839 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁))) |
23 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
24 | 23 | oveq2d 7172 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) = ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1)))) |
25 | | oveq1 7163 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑥 − 1) = ((𝑛 + 1) − 1)) |
26 | 25 | oveq2d 7172 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → (𝑀...(𝑥 − 1)) = (𝑀...((𝑛 + 1) − 1))) |
27 | 26 | sumeq1d 15119 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
28 | 24, 27 | breq12d 5049 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
29 | 22, 28 | imbi12d 348 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
30 | 29 | imbi2d 344 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))))) |
31 | | eleq1 2839 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) |
32 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝐹‘𝑥) = (𝐹‘𝑁)) |
33 | 32 | oveq2d 7172 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) = ((𝐹‘𝑀)𝐷(𝐹‘𝑁))) |
34 | | oveq1 7163 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1)) |
35 | 34 | oveq2d 7172 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑀...(𝑥 − 1)) = (𝑀...(𝑁 − 1))) |
36 | 35 | sumeq1d 15119 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
37 | 33, 36 | breq12d 5049 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹‘𝑀)𝐷(𝐹‘𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
38 | 31, 37 | imbi12d 348 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) ↔ (𝑁 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
39 | 38 | imbi2d 344 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑥)) ≤ Σ𝑘 ∈ (𝑀...(𝑥 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))))) |
40 | | 0le0 11788 |
. . . . . . . 8
⊢ 0 ≤
0 |
41 | 40 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 0) |
42 | | mettrifi.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
43 | | eluzfz1 12976 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
44 | 1, 43 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
45 | | mettrifi.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑋) |
46 | 45 | ralrimiva 3113 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑋) |
47 | | fveq2 6663 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
48 | 47 | eleq1d 2836 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ 𝑋 ↔ (𝐹‘𝑀) ∈ 𝑋)) |
49 | 48 | rspcv 3538 |
. . . . . . . . 9
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑋 → (𝐹‘𝑀) ∈ 𝑋)) |
50 | 44, 46, 49 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑋) |
51 | | met0 23058 |
. . . . . . . 8
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑀) ∈ 𝑋) → ((𝐹‘𝑀)𝐷(𝐹‘𝑀)) = 0) |
52 | 42, 50, 51 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝑀)𝐷(𝐹‘𝑀)) = 0) |
53 | | eluzel2 12300 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
54 | 1, 53 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
55 | 54 | zred 12139 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
56 | 55 | ltm1d 11623 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 − 1) < 𝑀) |
57 | | peano2zm 12077 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) |
58 | | fzn 12985 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)
→ ((𝑀 − 1) <
𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
59 | 54, 57, 58 | syl2anc2 588 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
60 | 56, 59 | mpbid 235 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...(𝑀 − 1)) = ∅) |
61 | 60 | sumeq1d 15119 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ ∅ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
62 | | sum0 15139 |
. . . . . . . 8
⊢
Σ𝑘 ∈
∅ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = 0 |
63 | 61, 62 | eqtrdi 2809 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = 0) |
64 | 41, 52, 63 | 3brtr4d 5068 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝑀)𝐷(𝐹‘𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
65 | 64 | a1d 25 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
66 | 65 | a1i 11 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑀)) ≤ Σ𝑘 ∈ (𝑀...(𝑀 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
67 | | peano2fzr 12982 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) |
68 | 67 | ex 416 |
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁))) |
69 | 68 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁))) |
70 | 69 | imim1d 82 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
71 | 42 | 3ad2ant1 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝐷 ∈ (Met‘𝑋)) |
72 | 50 | 3ad2ant1 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘𝑀) ∈ 𝑋) |
73 | | simp3 1135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
74 | 46 | 3ad2ant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑋) |
75 | | fveq2 6663 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
76 | 75 | eleq1d 2836 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ 𝑋 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑋)) |
77 | 76 | rspcv 3538 |
. . . . . . . . . . . . 13
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑋 → (𝐹‘(𝑛 + 1)) ∈ 𝑋)) |
78 | 73, 74, 77 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑋) |
79 | | fveq2 6663 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
80 | 79 | eleq1d 2836 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ 𝑋 ↔ (𝐹‘𝑛) ∈ 𝑋)) |
81 | 80 | cbvralvw 3361 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ (𝑀...𝑁)(𝐹‘𝑛) ∈ 𝑋) |
82 | 74, 81 | sylib 221 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ∀𝑛 ∈ (𝑀...𝑁)(𝐹‘𝑛) ∈ 𝑋) |
83 | 69 | 3impia 1114 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) |
84 | | rsp 3134 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
(𝑀...𝑁)(𝐹‘𝑛) ∈ 𝑋 → (𝑛 ∈ (𝑀...𝑁) → (𝐹‘𝑛) ∈ 𝑋)) |
85 | 82, 83, 84 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘𝑛) ∈ 𝑋) |
86 | | mettri 23067 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹‘𝑀) ∈ 𝑋 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋)) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1))))) |
87 | 71, 72, 78, 85, 86 | syl13anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1))))) |
88 | | metcl 23047 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑀) ∈ 𝑋 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑋) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ) |
89 | 71, 72, 78, 88 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ) |
90 | | metcl 23047 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑀) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ∈ ℝ) |
91 | 71, 72, 85, 90 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ∈ ℝ) |
92 | | metcl 23047 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑛) ∈ 𝑋 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑋) → ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ) |
93 | 71, 85, 78, 92 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ) |
94 | 91, 93 | readdcld 10721 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ∈ ℝ) |
95 | | fzfid 13403 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...𝑛) ∈ Fin) |
96 | 71 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐷 ∈ (Met‘𝑋)) |
97 | | elfzuz3 12966 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) |
98 | 83, 97 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑛)) |
99 | | fzss2 13009 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
100 | 98, 99 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
101 | 100 | sselda 3894 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁)) |
102 | 45 | 3ad2antl1 1182 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑋) |
103 | 101, 102 | syldan 594 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ 𝑋) |
104 | | elfzuz 12965 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) |
105 | 104 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
106 | | peano2uz 12354 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
108 | | elfzuz3 12966 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
109 | 73, 108 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
110 | 109 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
111 | | elfzuz3 12966 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑛 ∈ (ℤ≥‘𝑘)) |
112 | 111 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑛 ∈ (ℤ≥‘𝑘)) |
113 | | eluzp1p1 12323 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈
(ℤ≥‘𝑘) → (𝑛 + 1) ∈
(ℤ≥‘(𝑘 + 1))) |
114 | 112, 113 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝑛 + 1) ∈
(ℤ≥‘(𝑘 + 1))) |
115 | | uztrn 12313 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘(𝑛 + 1)) ∧ (𝑛 + 1) ∈
(ℤ≥‘(𝑘 + 1))) → 𝑁 ∈ (ℤ≥‘(𝑘 + 1))) |
116 | 110, 114,
115 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑁 ∈ (ℤ≥‘(𝑘 + 1))) |
117 | | elfzuzb 12963 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 + 1) ∈ (𝑀...𝑁) ↔ ((𝑘 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝑘 + 1)))) |
118 | 107, 116,
117 | sylanbrc 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
119 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑘 + 1) → (𝐹‘𝑛) = (𝐹‘(𝑘 + 1))) |
120 | 119 | eleq1d 2836 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑘 + 1) → ((𝐹‘𝑛) ∈ 𝑋 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑋)) |
121 | 120 | rspccva 3542 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑛 ∈
(𝑀...𝑁)(𝐹‘𝑛) ∈ 𝑋 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ 𝑋) |
122 | 82, 121 | sylan 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ 𝑋) |
123 | 118, 122 | syldan 594 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘(𝑘 + 1)) ∈ 𝑋) |
124 | | metcl 23047 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
125 | 96, 103, 123, 124 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
126 | 95, 125 | fsumrecl 15152 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
127 | | letr 10785 |
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ∈ ℝ ∧ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ∈ ℝ ∧ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) → ((((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ∧ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
128 | 89, 94, 126, 127 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ∧ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
129 | 87, 128 | mpand 694 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
130 | | fzfid 13403 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...(𝑛 − 1)) ∈ Fin) |
131 | | fzssp1 13012 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀...(𝑛 − 1)) ⊆ (𝑀...((𝑛 − 1) + 1)) |
132 | | eluzelz 12305 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
133 | 132 | 3ad2ant2 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ ℤ) |
134 | 133 | zcnd 12140 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ ℂ) |
135 | | ax-1cn 10646 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
136 | | npcan 10946 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 −
1) + 1) = 𝑛) |
137 | 134, 135,
136 | sylancl 589 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝑛 − 1) + 1) = 𝑛) |
138 | 137 | oveq2d 7172 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...((𝑛 − 1) + 1)) = (𝑀...𝑛)) |
139 | 131, 138 | sseqtrid 3946 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...(𝑛 − 1)) ⊆ (𝑀...𝑛)) |
140 | 139 | sselda 3894 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑛 − 1))) → 𝑘 ∈ (𝑀...𝑛)) |
141 | 140, 125 | syldan 594 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑛 − 1))) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
142 | 130, 141 | fsumrecl 15152 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
143 | 91, 142, 93 | leadd1d 11285 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ (Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))))) |
144 | | simp2 1134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
145 | 125 | recnd 10720 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℂ) |
146 | | fvoveq1 7179 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
147 | 79, 146 | oveq12d 7174 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) |
148 | 144, 145,
147 | fsumm1 15167 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = (Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1))))) |
149 | 148 | breq2d 5048 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ (Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))))) |
150 | 143, 149 | bitr4d 285 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑛)𝐷(𝐹‘(𝑛 + 1)))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
151 | | pncan 10943 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 + 1)
− 1) = 𝑛) |
152 | 134, 135,
151 | sylancl 589 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → ((𝑛 + 1) − 1) = 𝑛) |
153 | 152 | oveq2d 7172 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝑀...((𝑛 + 1) − 1)) = (𝑀...𝑛)) |
154 | 153 | sumeq1d 15119 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) = Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
155 | 154 | breq2d 5048 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ↔ ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...𝑛)((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
156 | 129, 150,
155 | 3imtr4d 297 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
157 | 156 | 3expia 1118 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
158 | 157 | a2d 29 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
159 | 70, 158 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
160 | 159 | expcom 417 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))))) |
161 | 160 | a2d 29 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑀...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘(𝑛 + 1))) ≤ Σ𝑘 ∈ (𝑀...((𝑛 + 1) − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))))) |
162 | 12, 21, 30, 39, 66, 161 | uzind4 12359 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))))) |
163 | 1, 162 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → ((𝐹‘𝑀)𝐷(𝐹‘𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))))) |
164 | 3, 163 | mpd 15 |
1
⊢ (𝜑 → ((𝐹‘𝑀)𝐷(𝐹‘𝑁)) ≤ Σ𝑘 ∈ (𝑀...(𝑁 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |