MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatval1 Structured version   Visualization version   GIF version

Theorem ccatval1 14600
Description: Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ, 18-Jan-2024.)
Assertion
Ref Expression
ccatval1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆𝐼))

Proof of Theorem ccatval1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 14596 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
213adant3 1132 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑆))) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
3 eleq1 2823 . . . 4 (𝑥 = 𝐼 → (𝑥 ∈ (0..^(♯‘𝑆)) ↔ 𝐼 ∈ (0..^(♯‘𝑆))))
4 fveq2 6881 . . . 4 (𝑥 = 𝐼 → (𝑆𝑥) = (𝑆𝐼))
5 fvoveq1 7433 . . . 4 (𝑥 = 𝐼 → (𝑇‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝐼 − (♯‘𝑆))))
63, 4, 5ifbieq12d 4534 . . 3 (𝑥 = 𝐼 → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))))
7 iftrue 4511 . . . 4 (𝐼 ∈ (0..^(♯‘𝑆)) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑆𝐼))
873ad2ant3 1135 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑆))) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑆𝐼))
96, 8sylan9eqr 2793 . 2 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑆))) ∧ 𝑥 = 𝐼) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = (𝑆𝐼))
10 id 22 . . . 4 (𝐼 ∈ (0..^(♯‘𝑆)) → 𝐼 ∈ (0..^(♯‘𝑆)))
11 lencl 14556 . . . 4 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 elfzoext 13743 . . . 4 ((𝐼 ∈ (0..^(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
1310, 11, 12syl2anr 597 . . 3 ((𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑆))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
14133adant1 1130 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑆))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
15 fvexd 6896 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑆))) → (𝑆𝐼) ∈ V)
162, 9, 14, 15fvmptd 6998 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  ifcif 4505  cmpt 5206  cfv 6536  (class class class)co 7410  0cc0 11134   + caddc 11137  cmin 11471  0cn0 12506  ..^cfzo 13676  chash 14353  Word cword 14536   ++ cconcat 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594
This theorem is referenced by:  ccatsymb  14605  ccatfv0  14606  ccatval1lsw  14607  ccatrid  14610  ccatass  14611  ccatrn  14612  ccats1val1  14649  ccat2s1p1  14652  lswccats1fst  14658  ccat2s1fvw  14661  ccatswrd  14691  ccatpfx  14724  pfxccat1  14725  swrdccatin1  14748  pfxccatin12lem3  14755  pfxccatin12  14756  splfv1  14778  splfv2a  14779  revccat  14789  cshwidxmod  14826  cats1fv  14883  ccat2s1fvwALT  14979  gsumsgrpccat  18823  efgsp1  19723  efgredlemd  19730  efgrelexlemb  19736  tgcgr4  28515  clwwlkccatlem  29975  clwwlkel  30032  wwlksext2clwwlk  30043  ccatf1  32929  chnind  32996  chnub  32997  cycpmco2lem2  33143  cycpmco2lem4  33145  cycpmco2lem5  33146  cycpmco2  33149  signstfvn  34606  signstfvp  34608  signstfvneq0  34609  lpadleft  34720
  Copyright terms: Public domain W3C validator