Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccatval1 | Structured version Visualization version GIF version |
Description: Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ, 18-Jan-2024.) |
Ref | Expression |
---|---|
ccatval1 | ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatfval 13985 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) | |
2 | 1 | 3adant3 1129 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
3 | eleq1 2839 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑥 ∈ (0..^(♯‘𝑆)) ↔ 𝐼 ∈ (0..^(♯‘𝑆)))) | |
4 | fveq2 6663 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑆‘𝑥) = (𝑆‘𝐼)) | |
5 | fvoveq1 7179 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑇‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝐼 − (♯‘𝑆)))) | |
6 | 3, 4, 5 | ifbieq12d 4451 | . . 3 ⊢ (𝑥 = 𝐼 → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆))))) |
7 | iftrue 4429 | . . . 4 ⊢ (𝐼 ∈ (0..^(♯‘𝑆)) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑆‘𝐼)) | |
8 | 7 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑆‘𝐼)) |
9 | 6, 8 | sylan9eqr 2815 | . 2 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) ∧ 𝑥 = 𝐼) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = (𝑆‘𝐼)) |
10 | id 22 | . . . 4 ⊢ (𝐼 ∈ (0..^(♯‘𝑆)) → 𝐼 ∈ (0..^(♯‘𝑆))) | |
11 | lencl 13945 | . . . 4 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0) | |
12 | elfzoext 13156 | . . . 4 ⊢ ((𝐼 ∈ (0..^(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
13 | 10, 11, 12 | syl2anr 599 | . . 3 ⊢ ((𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
14 | 13 | 3adant1 1127 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
15 | fvexd 6678 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝐼) ∈ V) | |
16 | 2, 9, 14, 15 | fvmptd 6771 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ifcif 4423 ↦ cmpt 5116 ‘cfv 6340 (class class class)co 7156 0cc0 10588 + caddc 10591 − cmin 10921 ℕ0cn0 11947 ..^cfzo 13095 ♯chash 13753 Word cword 13926 ++ cconcat 13982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-fzo 13096 df-hash 13754 df-word 13927 df-concat 13983 |
This theorem is referenced by: ccatsymb 13996 ccatfv0 13997 ccatval1lsw 13998 ccatrid 14001 ccatass 14002 ccatrn 14003 ccats1val1 14041 ccat2s1p1 14045 lswccats1fst 14054 ccat2s1fvw 14058 ccat2s1fvwOLD 14059 ccatswrd 14090 ccatpfx 14123 pfxccat1 14124 swrdccatin1 14147 pfxccatin12lem3 14154 pfxccatin12 14155 splfv1 14177 splfv2a 14178 revccat 14188 cshwidxmod 14225 cats1fv 14281 ccat2s1fvwALT 14378 ccat2s1fvwALTOLD 14379 gsumsgrpccat 18083 gsumccatOLD 18084 efgsp1 18943 efgredlemd 18950 efgrelexlemb 18956 tgcgr4 26437 clwwlkccatlem 27886 clwwlkel 27943 wwlksext2clwwlk 27954 ccatf1 30759 cycpmco2lem2 30932 cycpmco2lem4 30934 cycpmco2lem5 30935 cycpmco2 30938 signstfvn 32079 signstfvp 32081 signstfvneq0 32082 lpadleft 32194 |
Copyright terms: Public domain | W3C validator |