| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccatcl | Structured version Visualization version GIF version | ||
| Description: The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.) |
| Ref | Expression |
|---|---|
| ccatcl | ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatfval 14487 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) | |
| 2 | wrdf 14432 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆:(0..^(♯‘𝑆))⟶𝐵) | |
| 3 | 2 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐵) |
| 4 | 3 | ffvelcdmda 7026 | . . . . 5 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝑥) ∈ 𝐵) |
| 5 | wrdf 14432 | . . . . . . 7 ⊢ (𝑇 ∈ Word 𝐵 → 𝑇:(0..^(♯‘𝑇))⟶𝐵) | |
| 6 | 5 | ad3antlr 731 | . . . . . 6 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐵) |
| 7 | simpr 484 | . . . . . . . 8 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
| 8 | 7 | anim1i 615 | . . . . . . 7 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆)))) |
| 9 | lencl 14447 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
| 10 | 9 | nn0zd 12504 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ) |
| 11 | lencl 14447 | . . . . . . . . . 10 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0) | |
| 12 | 11 | nn0zd 12504 | . . . . . . . . 9 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℤ) |
| 13 | 10, 12 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) |
| 14 | 13 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) |
| 15 | fzocatel 13636 | . . . . . . 7 ⊢ (((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) ∧ ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) | |
| 16 | 8, 14, 15 | syl2anc 584 | . . . . . 6 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) |
| 17 | 6, 16 | ffvelcdmd 7027 | . . . . 5 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐵) |
| 18 | 4, 17 | ifclda 4512 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐵) |
| 19 | 18 | fmpttd 7057 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵) |
| 20 | iswrdi 14431 | . . 3 ⊢ ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵 → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵) |
| 22 | 1, 21 | eqeltrd 2833 | 1 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 ifcif 4476 ↦ cmpt 5176 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 0cc0 11017 + caddc 11020 − cmin 11355 ℤcz 12479 ..^cfzo 13561 ♯chash 14244 Word cword 14427 ++ cconcat 14484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-concat 14485 |
| This theorem is referenced by: ccatdmss 14496 ccatsymb 14497 ccatass 14503 ccatalpha 14508 ccatws1cl 14531 ccatws1clv 14532 ccatswrd 14583 swrdccat2 14584 ccatpfx 14615 pfxccat1 14616 swrdccatfn 14638 swrdccatin1 14639 swrdccatin2 14643 pfxccatin12lem2c 14644 pfxccatpfx1 14650 pfxccatpfx2 14651 splcl 14666 spllen 14668 splfv1 14669 splfv2a 14670 splval2 14671 revccat 14680 cshwcl 14712 cats1cld 14769 cats1cli 14771 cats2cat 14776 chnccats1 18539 chnccat 18540 gsumsgrpccat 18756 gsumspl 18760 gsumwspan 18762 frmdplusg 18770 frmdmnd 18775 frmdsssubm 18777 frmdup1 18780 psgnuni 19419 efginvrel2 19647 efgsp1 19657 efgredleme 19663 efgredlemc 19665 efgcpbllemb 19675 efgcpbl2 19677 frgpuplem 19692 frgpup1 19695 psgnghm 21526 wwlksnext 29892 clwwlkccat 29991 clwlkclwwlk2 30004 clwwlkel 30047 wwlksext2clwwlk 30058 numclwwlk1lem2fo 30359 ccatf1 32959 splfv3 32968 gsumwrd2dccatlem 33087 cycpmco2f1 33134 cycpmco2rn 33135 cycpmco2lem2 33137 cycpmco2lem3 33138 cycpmco2lem4 33139 cycpmco2lem5 33140 cycpmco2lem6 33141 cycpmco2 33143 cyc3genpm 33162 1arithufdlem2 33554 sseqf 34477 ofcccat 34628 signstfvc 34659 signsvfn 34667 signsvtn 34669 signshf 34673 mrsubccat 35634 mrsubco 35637 frlmfzoccat 42675 |
| Copyright terms: Public domain | W3C validator |