Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccatcl | Structured version Visualization version GIF version |
Description: The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.) |
Ref | Expression |
---|---|
ccatcl | ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatfval 14204 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) | |
2 | wrdf 14150 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆:(0..^(♯‘𝑆))⟶𝐵) | |
3 | 2 | ad2antrr 722 | . . . . . 6 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐵) |
4 | 3 | ffvelrnda 6943 | . . . . 5 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝑥) ∈ 𝐵) |
5 | wrdf 14150 | . . . . . . 7 ⊢ (𝑇 ∈ Word 𝐵 → 𝑇:(0..^(♯‘𝑇))⟶𝐵) | |
6 | 5 | ad3antlr 727 | . . . . . 6 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐵) |
7 | simpr 484 | . . . . . . . 8 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
8 | 7 | anim1i 614 | . . . . . . 7 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆)))) |
9 | lencl 14164 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
10 | 9 | nn0zd 12353 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ) |
11 | lencl 14164 | . . . . . . . . . 10 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0) | |
12 | 11 | nn0zd 12353 | . . . . . . . . 9 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℤ) |
13 | 10, 12 | anim12i 612 | . . . . . . . 8 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) |
14 | 13 | ad2antrr 722 | . . . . . . 7 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) |
15 | fzocatel 13379 | . . . . . . 7 ⊢ (((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) ∧ ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) | |
16 | 8, 14, 15 | syl2anc 583 | . . . . . 6 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) |
17 | 6, 16 | ffvelrnd 6944 | . . . . 5 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐵) |
18 | 4, 17 | ifclda 4491 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐵) |
19 | 18 | fmpttd 6971 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵) |
20 | iswrdi 14149 | . . 3 ⊢ ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵 → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵) |
22 | 1, 21 | eqeltrd 2839 | 1 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ifcif 4456 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 + caddc 10805 − cmin 11135 ℤcz 12249 ..^cfzo 13311 ♯chash 13972 Word cword 14145 ++ cconcat 14201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 |
This theorem is referenced by: ccatsymb 14215 ccatass 14221 ccatalpha 14226 ccatws1cl 14249 ccatws1clv 14250 ccatswrd 14309 swrdccat2 14310 ccatpfx 14342 pfxccat1 14343 swrdccatfn 14365 swrdccatin1 14366 swrdccatin2 14370 pfxccatin12lem2c 14371 pfxccatpfx1 14377 pfxccatpfx2 14378 splcl 14393 spllen 14395 splfv1 14396 splfv2a 14397 splval2 14398 revccat 14407 cshwcl 14439 cats1cld 14496 cats1cli 14498 cats2cat 14503 gsumsgrpccat 18393 gsumccatOLD 18394 gsumspl 18398 gsumwspan 18400 frmdplusg 18408 frmdmnd 18413 frmdsssubm 18415 frmdup1 18418 psgnuni 19022 efginvrel2 19248 efgsp1 19258 efgredleme 19264 efgredlemc 19266 efgcpbllemb 19276 efgcpbl2 19278 frgpuplem 19293 frgpup1 19296 psgnghm 20697 wwlksnext 28159 clwwlkccat 28255 clwlkclwwlk2 28268 clwwlkel 28311 wwlksext2clwwlk 28322 numclwwlk1lem2fo 28623 ccatf1 31125 splfv3 31132 cycpmco2f1 31293 cycpmco2rn 31294 cycpmco2lem2 31296 cycpmco2lem3 31297 cycpmco2lem4 31298 cycpmco2lem5 31299 cycpmco2lem6 31300 cycpmco2 31302 cyc3genpm 31321 sseqf 32259 ofcccat 32422 signstfvc 32453 signsvfn 32461 signsvtn 32463 signshf 32467 mrsubccat 33380 mrsubco 33383 frlmfzoccat 40162 |
Copyright terms: Public domain | W3C validator |