MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatcl Structured version   Visualization version   GIF version

Theorem ccatcl 14539
Description: The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.)
Assertion
Ref Expression
ccatcl ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)

Proof of Theorem ccatcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 14538 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
2 wrdf 14483 . . . . . . 7 (𝑆 ∈ Word 𝐵𝑆:(0..^(♯‘𝑆))⟶𝐵)
32ad2antrr 726 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐵)
43ffvelcdmda 7056 . . . . 5 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ 𝐵)
5 wrdf 14483 . . . . . . 7 (𝑇 ∈ Word 𝐵𝑇:(0..^(♯‘𝑇))⟶𝐵)
65ad3antlr 731 . . . . . 6 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐵)
7 simpr 484 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
87anim1i 615 . . . . . . 7 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))))
9 lencl 14498 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
109nn0zd 12555 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
11 lencl 14498 . . . . . . . . . 10 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
1211nn0zd 12555 . . . . . . . . 9 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℤ)
1310, 12anim12i 613 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ))
1413ad2antrr 726 . . . . . . 7 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ))
15 fzocatel 13690 . . . . . . 7 (((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) ∧ ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
168, 14, 15syl2anc 584 . . . . . 6 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
176, 16ffvelcdmd 7057 . . . . 5 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐵)
184, 17ifclda 4524 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐵)
1918fmpttd 7087 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵)
20 iswrdi 14482 . . 3 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵 → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵)
2119, 20syl 17 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵)
221, 21eqeltrd 2828 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  ifcif 4488  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068   + caddc 11071  cmin 11405  cz 12529  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536
This theorem is referenced by:  ccatsymb  14547  ccatass  14553  ccatalpha  14558  ccatws1cl  14581  ccatws1clv  14582  ccatswrd  14633  swrdccat2  14634  ccatpfx  14666  pfxccat1  14667  swrdccatfn  14689  swrdccatin1  14690  swrdccatin2  14694  pfxccatin12lem2c  14695  pfxccatpfx1  14701  pfxccatpfx2  14702  splcl  14717  spllen  14719  splfv1  14720  splfv2a  14721  splval2  14722  revccat  14731  cshwcl  14763  cats1cld  14821  cats1cli  14823  cats2cat  14828  gsumsgrpccat  18767  gsumspl  18771  gsumwspan  18773  frmdplusg  18781  frmdmnd  18786  frmdsssubm  18788  frmdup1  18791  psgnuni  19429  efginvrel2  19657  efgsp1  19667  efgredleme  19673  efgredlemc  19675  efgcpbllemb  19685  efgcpbl2  19687  frgpuplem  19702  frgpup1  19705  psgnghm  21489  wwlksnext  29823  clwwlkccat  29919  clwlkclwwlk2  29932  clwwlkel  29975  wwlksext2clwwlk  29986  numclwwlk1lem2fo  30287  ccatf1  32870  ccatdmss  32871  splfv3  32880  chnccats1  32941  gsumwrd2dccatlem  33006  cycpmco2f1  33081  cycpmco2rn  33082  cycpmco2lem2  33084  cycpmco2lem3  33085  cycpmco2lem4  33086  cycpmco2lem5  33087  cycpmco2lem6  33088  cycpmco2  33090  cyc3genpm  33109  1arithufdlem2  33516  sseqf  34383  ofcccat  34534  signstfvc  34565  signsvfn  34573  signsvtn  34575  signshf  34579  mrsubccat  35505  mrsubco  35508  frlmfzoccat  42493
  Copyright terms: Public domain W3C validator