![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccatcl | Structured version Visualization version GIF version |
Description: The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.) |
Ref | Expression |
---|---|
ccatcl | ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatfval 14608 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) | |
2 | wrdf 14554 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆:(0..^(♯‘𝑆))⟶𝐵) | |
3 | 2 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐵) |
4 | 3 | ffvelcdmda 7104 | . . . . 5 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝑥) ∈ 𝐵) |
5 | wrdf 14554 | . . . . . . 7 ⊢ (𝑇 ∈ Word 𝐵 → 𝑇:(0..^(♯‘𝑇))⟶𝐵) | |
6 | 5 | ad3antlr 731 | . . . . . 6 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐵) |
7 | simpr 484 | . . . . . . . 8 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
8 | 7 | anim1i 615 | . . . . . . 7 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆)))) |
9 | lencl 14568 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
10 | 9 | nn0zd 12637 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ) |
11 | lencl 14568 | . . . . . . . . . 10 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0) | |
12 | 11 | nn0zd 12637 | . . . . . . . . 9 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℤ) |
13 | 10, 12 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) |
14 | 13 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) |
15 | fzocatel 13765 | . . . . . . 7 ⊢ (((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) ∧ ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) | |
16 | 8, 14, 15 | syl2anc 584 | . . . . . 6 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) |
17 | 6, 16 | ffvelcdmd 7105 | . . . . 5 ⊢ ((((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐵) |
18 | 4, 17 | ifclda 4566 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐵) |
19 | 18 | fmpttd 7135 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵) |
20 | iswrdi 14553 | . . 3 ⊢ ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵 → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵) |
22 | 1, 21 | eqeltrd 2839 | 1 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2106 ifcif 4531 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 0cc0 11153 + caddc 11156 − cmin 11490 ℤcz 12611 ..^cfzo 13691 ♯chash 14366 Word cword 14549 ++ cconcat 14605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 |
This theorem is referenced by: ccatsymb 14617 ccatass 14623 ccatalpha 14628 ccatws1cl 14651 ccatws1clv 14652 ccatswrd 14703 swrdccat2 14704 ccatpfx 14736 pfxccat1 14737 swrdccatfn 14759 swrdccatin1 14760 swrdccatin2 14764 pfxccatin12lem2c 14765 pfxccatpfx1 14771 pfxccatpfx2 14772 splcl 14787 spllen 14789 splfv1 14790 splfv2a 14791 splval2 14792 revccat 14801 cshwcl 14833 cats1cld 14891 cats1cli 14893 cats2cat 14898 gsumsgrpccat 18866 gsumspl 18870 gsumwspan 18872 frmdplusg 18880 frmdmnd 18885 frmdsssubm 18887 frmdup1 18890 psgnuni 19532 efginvrel2 19760 efgsp1 19770 efgredleme 19776 efgredlemc 19778 efgcpbllemb 19788 efgcpbl2 19790 frgpuplem 19805 frgpup1 19808 psgnghm 21616 wwlksnext 29923 clwwlkccat 30019 clwlkclwwlk2 30032 clwwlkel 30075 wwlksext2clwwlk 30086 numclwwlk1lem2fo 30387 ccatf1 32918 ccatdmss 32919 splfv3 32928 gsumwrd2dccatlem 33052 cycpmco2f1 33127 cycpmco2rn 33128 cycpmco2lem2 33130 cycpmco2lem3 33131 cycpmco2lem4 33132 cycpmco2lem5 33133 cycpmco2lem6 33134 cycpmco2 33136 cyc3genpm 33155 1arithufdlem2 33553 sseqf 34374 ofcccat 34537 signstfvc 34568 signsvfn 34576 signsvtn 34578 signshf 34582 mrsubccat 35503 mrsubco 35506 frlmfzoccat 42492 |
Copyright terms: Public domain | W3C validator |