MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatlen Structured version   Visualization version   GIF version

Theorem ccatlen 14482
Description: The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
Assertion
Ref Expression
ccatlen ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))

Proof of Theorem ccatlen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 14480 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
21fveq2d 6826 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))))
3 fvex 6835 . . . . 5 (𝑆𝑥) ∈ V
4 fvex 6835 . . . . 5 (𝑇‘(𝑥 − (♯‘𝑆))) ∈ V
53, 4ifex 4526 . . . 4 if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ V
6 eqid 2731 . . . 4 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
75, 6fnmpti 6624 . . 3 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) Fn (0..^((♯‘𝑆) + (♯‘𝑇)))
8 hashfn 14282 . . 3 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) → (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) = (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))))
97, 8mp1i 13 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) = (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))))
10 lencl 14440 . . . 4 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
11 lencl 14440 . . . 4 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 nn0addcl 12416 . . . 4 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
1310, 11, 12syl2an 596 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
14 hashfzo0 14337 . . 3 (((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0 → (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))) = ((♯‘𝑆) + (♯‘𝑇)))
1513, 14syl 17 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))) = ((♯‘𝑆) + (♯‘𝑇)))
162, 9, 153eqtrd 2770 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4475  cmpt 5172   Fn wfn 6476  cfv 6481  (class class class)co 7346  0cc0 11006   + caddc 11009  cmin 11344  0cn0 12381  ..^cfzo 13554  chash 14237  Word cword 14420   ++ cconcat 14477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478
This theorem is referenced by:  ccat0  14483  elfzelfzccat  14487  ccatdmss  14489  ccatsymb  14490  ccatass  14496  lswccatn0lsw  14499  ccatws1len  14528  ccat2s1len  14531  ccatswrd  14576  swrdccat2  14577  ccatpfx  14608  pfxccat1  14609  lenrevpfxcctswrd  14619  ccatopth  14623  ccatopth2  14624  swrdccatfn  14631  swrdccatin2  14636  pfxccatin12lem2c  14637  spllen  14661  splfv1  14662  splfv2a  14663  splval2  14664  revccat  14673  cshwlen  14706  cats1len  14767  chnccat  18532  gsumsgrpccat  18748  psgnuni  19412  efginvrel2  19640  efgsval2  19646  efgsp1  19650  efgredleme  19656  efgredlemc  19658  efgcpbllemb  19668  pgpfaclem1  19996  psgnghm  21518  wwlksnext  29872  wwlksnextbi  29873  clwwlkccatlem  29967  clwlkclwwlk2  29981  clwwlkel  30024  clwwlkwwlksb  30032  clwwlknccat  30041  ccatf1  32928  splfv3  32937  gsumwrd2dccatlem  33044  cycpmco2lem3  33095  cycpmco2lem4  33096  cycpmco2lem5  33097  cycpmco2lem6  33098  cycpmco2  33100  ofcccat  34554  signstfvn  34580  signstfvp  34582  signstfvc  34585  signsvfn  34593  signshf  34599  lpadlen2  34692  elmrsubrn  35562  ccatcan2d  42290  frlmfzoccat  42544
  Copyright terms: Public domain W3C validator