MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatlen Structured version   Visualization version   GIF version

Theorem ccatlen 14500
Description: The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
Assertion
Ref Expression
ccatlen ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))

Proof of Theorem ccatlen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 14498 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
21fveq2d 6830 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))))
3 fvex 6839 . . . . 5 (𝑆𝑥) ∈ V
4 fvex 6839 . . . . 5 (𝑇‘(𝑥 − (♯‘𝑆))) ∈ V
53, 4ifex 4529 . . . 4 if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ V
6 eqid 2729 . . . 4 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
75, 6fnmpti 6629 . . 3 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) Fn (0..^((♯‘𝑆) + (♯‘𝑇)))
8 hashfn 14300 . . 3 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) → (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) = (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))))
97, 8mp1i 13 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) = (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))))
10 lencl 14458 . . . 4 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
11 lencl 14458 . . . 4 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 nn0addcl 12437 . . . 4 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
1310, 11, 12syl2an 596 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
14 hashfzo0 14355 . . 3 (((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0 → (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))) = ((♯‘𝑆) + (♯‘𝑇)))
1513, 14syl 17 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))) = ((♯‘𝑆) + (♯‘𝑇)))
162, 9, 153eqtrd 2768 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4478  cmpt 5176   Fn wfn 6481  cfv 6486  (class class class)co 7353  0cc0 11028   + caddc 11031  cmin 11365  0cn0 12402  ..^cfzo 13575  chash 14255  Word cword 14438   ++ cconcat 14495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496
This theorem is referenced by:  ccat0  14501  elfzelfzccat  14505  ccatsymb  14507  ccatass  14513  lswccatn0lsw  14516  ccatws1len  14545  ccat2s1len  14548  ccatswrd  14593  swrdccat2  14594  ccatpfx  14625  pfxccat1  14626  lenrevpfxcctswrd  14636  ccatopth  14640  ccatopth2  14641  swrdccatfn  14648  swrdccatin2  14653  pfxccatin12lem2c  14654  spllen  14678  splfv1  14679  splfv2a  14680  splval2  14681  revccat  14690  cshwlen  14723  cats1len  14785  gsumsgrpccat  18732  psgnuni  19396  efginvrel2  19624  efgsval2  19630  efgsp1  19634  efgredleme  19640  efgredlemc  19642  efgcpbllemb  19652  pgpfaclem1  19980  psgnghm  21505  wwlksnext  29856  wwlksnextbi  29857  clwwlkccatlem  29951  clwlkclwwlk2  29965  clwwlkel  30008  clwwlkwwlksb  30016  clwwlknccat  30025  ccatf1  32903  ccatdmss  32904  splfv3  32913  gsumwrd2dccatlem  33032  cycpmco2lem3  33083  cycpmco2lem4  33084  cycpmco2lem5  33085  cycpmco2lem6  33086  cycpmco2  33088  ofcccat  34513  signstfvn  34539  signstfvp  34541  signstfvc  34544  signsvfn  34552  signshf  34558  lpadlen2  34651  elmrsubrn  35495  ccatcan2d  42227  frlmfzoccat  42481
  Copyright terms: Public domain W3C validator