MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatlen Structured version   Visualization version   GIF version

Theorem ccatlen 14206
Description: The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
Assertion
Ref Expression
ccatlen ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))

Proof of Theorem ccatlen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 14204 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
21fveq2d 6760 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))))
3 fvex 6769 . . . . 5 (𝑆𝑥) ∈ V
4 fvex 6769 . . . . 5 (𝑇‘(𝑥 − (♯‘𝑆))) ∈ V
53, 4ifex 4506 . . . 4 if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ V
6 eqid 2738 . . . 4 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
75, 6fnmpti 6560 . . 3 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) Fn (0..^((♯‘𝑆) + (♯‘𝑇)))
8 hashfn 14018 . . 3 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) → (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) = (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))))
97, 8mp1i 13 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) = (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))))
10 lencl 14164 . . . 4 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
11 lencl 14164 . . . 4 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 nn0addcl 12198 . . . 4 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
1310, 11, 12syl2an 595 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
14 hashfzo0 14073 . . 3 (((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0 → (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))) = ((♯‘𝑆) + (♯‘𝑇)))
1513, 14syl 17 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))) = ((♯‘𝑆) + (♯‘𝑇)))
162, 9, 153eqtrd 2782 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ifcif 4456  cmpt 5153   Fn wfn 6413  cfv 6418  (class class class)co 7255  0cc0 10802   + caddc 10805  cmin 11135  0cn0 12163  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202
This theorem is referenced by:  ccat0  14208  elfzelfzccat  14213  ccatsymb  14215  ccatass  14221  lswccatn0lsw  14224  ccatws1len  14253  ccat2s1len  14256  ccatswrd  14309  swrdccat2  14310  ccatpfx  14342  pfxccat1  14343  lenrevpfxcctswrd  14353  ccatopth  14357  ccatopth2  14358  swrdccatfn  14365  swrdccatin2  14370  pfxccatin12lem2c  14371  spllen  14395  splfv1  14396  splfv2a  14397  splval2  14398  revccat  14407  cshwlen  14440  cats1len  14501  gsumsgrpccat  18393  gsumccatOLD  18394  psgnuni  19022  efginvrel2  19248  efgsval2  19254  efgsp1  19258  efgredleme  19264  efgredlemc  19266  efgcpbllemb  19276  pgpfaclem1  19599  psgnghm  20697  wwlksnext  28159  wwlksnextbi  28160  clwwlkccatlem  28254  clwlkclwwlk2  28268  clwwlkel  28311  clwwlkwwlksb  28319  clwwlknccat  28328  ccatf1  31125  splfv3  31132  cycpmco2lem3  31297  cycpmco2lem4  31298  cycpmco2lem5  31299  cycpmco2lem6  31300  cycpmco2  31302  ofcccat  32422  signstfvn  32448  signstfvp  32450  signstfvc  32453  signsvfn  32461  signshf  32467  lpadlen2  32561  elmrsubrn  33382  ccatcan2d  40145  frlmfzoccat  40162
  Copyright terms: Public domain W3C validator