MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatlen Structured version   Visualization version   GIF version

Theorem ccatlen 14623
Description: The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
Assertion
Ref Expression
ccatlen ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))

Proof of Theorem ccatlen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 14621 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
21fveq2d 6924 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))))
3 fvex 6933 . . . . 5 (𝑆𝑥) ∈ V
4 fvex 6933 . . . . 5 (𝑇‘(𝑥 − (♯‘𝑆))) ∈ V
53, 4ifex 4598 . . . 4 if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ V
6 eqid 2740 . . . 4 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
75, 6fnmpti 6723 . . 3 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) Fn (0..^((♯‘𝑆) + (♯‘𝑇)))
8 hashfn 14424 . . 3 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) → (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) = (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))))
97, 8mp1i 13 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) = (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))))
10 lencl 14581 . . . 4 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
11 lencl 14581 . . . 4 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 nn0addcl 12588 . . . 4 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
1310, 11, 12syl2an 595 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
14 hashfzo0 14479 . . 3 (((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0 → (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))) = ((♯‘𝑆) + (♯‘𝑇)))
1513, 14syl 17 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(0..^((♯‘𝑆) + (♯‘𝑇)))) = ((♯‘𝑆) + (♯‘𝑇)))
162, 9, 153eqtrd 2784 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ifcif 4548  cmpt 5249   Fn wfn 6568  cfv 6573  (class class class)co 7448  0cc0 11184   + caddc 11187  cmin 11520  0cn0 12553  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619
This theorem is referenced by:  ccat0  14624  elfzelfzccat  14628  ccatsymb  14630  ccatass  14636  lswccatn0lsw  14639  ccatws1len  14668  ccat2s1len  14671  ccatswrd  14716  swrdccat2  14717  ccatpfx  14749  pfxccat1  14750  lenrevpfxcctswrd  14760  ccatopth  14764  ccatopth2  14765  swrdccatfn  14772  swrdccatin2  14777  pfxccatin12lem2c  14778  spllen  14802  splfv1  14803  splfv2a  14804  splval2  14805  revccat  14814  cshwlen  14847  cats1len  14909  gsumsgrpccat  18875  psgnuni  19541  efginvrel2  19769  efgsval2  19775  efgsp1  19779  efgredleme  19785  efgredlemc  19787  efgcpbllemb  19797  pgpfaclem1  20125  psgnghm  21621  wwlksnext  29926  wwlksnextbi  29927  clwwlkccatlem  30021  clwlkclwwlk2  30035  clwwlkel  30078  clwwlkwwlksb  30086  clwwlknccat  30095  ccatf1  32915  ccatdmss  32916  splfv3  32925  cycpmco2lem3  33121  cycpmco2lem4  33122  cycpmco2lem5  33123  cycpmco2lem6  33124  cycpmco2  33126  ofcccat  34520  signstfvn  34546  signstfvp  34548  signstfvc  34551  signsvfn  34559  signshf  34565  lpadlen2  34658  elmrsubrn  35488  ccatcan2d  42246  frlmfzoccat  42460
  Copyright terms: Public domain W3C validator