Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climmptf Structured version   Visualization version   GIF version

Theorem climmptf 45696
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climmptf.k 𝑘𝐹
climmptf.m (𝜑𝑀 ∈ ℤ)
climmptf.f (𝜑𝐹𝑉)
climmptf.z 𝑍 = (ℤ𝑀)
climmptf.g 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
Assertion
Ref Expression
climmptf (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climmptf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climmptf.m . 2 (𝜑𝑀 ∈ ℤ)
2 climmptf.f . 2 (𝜑𝐹𝑉)
3 climmptf.z . . 3 𝑍 = (ℤ𝑀)
4 climmptf.g . . . 4 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
5 nfcv 2905 . . . . 5 𝑗(𝐹𝑘)
6 climmptf.k . . . . . 6 𝑘𝐹
7 nfcv 2905 . . . . . 6 𝑘𝑗
86, 7nffv 6916 . . . . 5 𝑘(𝐹𝑗)
9 fveq2 6906 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
105, 8, 9cbvmpt 5253 . . . 4 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑗𝑍 ↦ (𝐹𝑗))
114, 10eqtri 2765 . . 3 𝐺 = (𝑗𝑍 ↦ (𝐹𝑗))
123, 11climmpt 15607 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
131, 2, 12syl2anc 584 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wnfc 2890   class class class wbr 5143  cmpt 5225  cfv 6561  cz 12613  cuz 12878  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-z 12614  df-uz 12879  df-clim 15524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator