Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climmptf | Structured version Visualization version GIF version |
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climmptf.k | ⊢ Ⅎ𝑘𝐹 |
climmptf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climmptf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climmptf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climmptf.g | ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climmptf | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climmptf.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | climmptf.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | climmptf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | climmptf.g | . . . 4 ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
5 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑗(𝐹‘𝑘) | |
6 | climmptf.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
7 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
8 | 6, 7 | nffv 6778 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
9 | fveq2 6768 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
10 | 5, 8, 9 | cbvmpt 5189 | . . . 4 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) = (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) |
11 | 4, 10 | eqtri 2767 | . . 3 ⊢ 𝐺 = (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) |
12 | 3, 11 | climmpt 15261 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
13 | 1, 2, 12 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 Ⅎwnfc 2888 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 ℤcz 12302 ℤ≥cuz 12564 ⇝ cli 15174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-neg 11191 df-z 12303 df-uz 12565 df-clim 15178 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |