Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climmptf Structured version   Visualization version   GIF version

Theorem climmptf 45710
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climmptf.k 𝑘𝐹
climmptf.m (𝜑𝑀 ∈ ℤ)
climmptf.f (𝜑𝐹𝑉)
climmptf.z 𝑍 = (ℤ𝑀)
climmptf.g 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
Assertion
Ref Expression
climmptf (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climmptf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climmptf.m . 2 (𝜑𝑀 ∈ ℤ)
2 climmptf.f . 2 (𝜑𝐹𝑉)
3 climmptf.z . . 3 𝑍 = (ℤ𝑀)
4 climmptf.g . . . 4 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
5 nfcv 2898 . . . . 5 𝑗(𝐹𝑘)
6 climmptf.k . . . . . 6 𝑘𝐹
7 nfcv 2898 . . . . . 6 𝑘𝑗
86, 7nffv 6886 . . . . 5 𝑘(𝐹𝑗)
9 fveq2 6876 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
105, 8, 9cbvmpt 5223 . . . 4 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑗𝑍 ↦ (𝐹𝑗))
114, 10eqtri 2758 . . 3 𝐺 = (𝑗𝑍 ↦ (𝐹𝑗))
123, 11climmpt 15587 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
131, 2, 12syl2anc 584 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wnfc 2883   class class class wbr 5119  cmpt 5201  cfv 6531  cz 12588  cuz 12852  cli 15500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-neg 11469  df-z 12589  df-uz 12853  df-clim 15504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator