Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climmptf | Structured version Visualization version GIF version |
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climmptf.k | ⊢ Ⅎ𝑘𝐹 |
climmptf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climmptf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climmptf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climmptf.g | ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climmptf | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climmptf.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | climmptf.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | climmptf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | climmptf.g | . . . 4 ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
5 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑗(𝐹‘𝑘) | |
6 | climmptf.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
7 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
8 | 6, 7 | nffv 6814 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
9 | fveq2 6804 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
10 | 5, 8, 9 | cbvmpt 5192 | . . . 4 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) = (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) |
11 | 4, 10 | eqtri 2764 | . . 3 ⊢ 𝐺 = (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) |
12 | 3, 11 | climmpt 15329 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
13 | 1, 2, 12 | syl2anc 585 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 Ⅎwnfc 2885 class class class wbr 5081 ↦ cmpt 5164 ‘cfv 6458 ℤcz 12369 ℤ≥cuz 12632 ⇝ cli 15242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-pre-lttri 10995 ax-pre-lttrn 10996 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-neg 11258 df-z 12370 df-uz 12633 df-clim 15246 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |