| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climmptf | Structured version Visualization version GIF version | ||
| Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| climmptf.k | ⊢ Ⅎ𝑘𝐹 |
| climmptf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climmptf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climmptf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climmptf.g | ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climmptf | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climmptf.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | climmptf.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | climmptf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | climmptf.g | . . . 4 ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
| 5 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑗(𝐹‘𝑘) | |
| 6 | climmptf.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 7 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 8 | 6, 7 | nffv 6838 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 9 | fveq2 6828 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 10 | 5, 8, 9 | cbvmpt 5195 | . . . 4 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) = (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) |
| 11 | 4, 10 | eqtri 2756 | . . 3 ⊢ 𝐺 = (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) |
| 12 | 3, 11 | climmpt 15480 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| 13 | 1, 2, 12 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 ℤcz 12475 ℤ≥cuz 12738 ⇝ cli 15393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-neg 11354 df-z 12476 df-uz 12739 df-clim 15397 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |