| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climmpt | Structured version Visualization version GIF version | ||
| Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| 2clim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climmpt.2 | ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climmpt | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2clim.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | simpr 484 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
| 3 | climmpt.2 | . . . 4 ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
| 4 | fvex 6835 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ∈ V | |
| 5 | 1, 4 | eqeltri 2827 | . . . . 5 ⊢ 𝑍 ∈ V |
| 6 | 5 | mptex 7157 | . . . 4 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V |
| 7 | 3, 6 | eqeltri 2827 | . . 3 ⊢ 𝐺 ∈ V |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐺 ∈ V) |
| 9 | simpl 482 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝑀 ∈ ℤ) | |
| 10 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 11 | fvex 6835 | . . . . 5 ⊢ (𝐹‘𝑚) ∈ V | |
| 12 | 10, 3, 11 | fvmpt 6929 | . . . 4 ⊢ (𝑚 ∈ 𝑍 → (𝐺‘𝑚) = (𝐹‘𝑚)) |
| 13 | 12 | eqcomd 2737 | . . 3 ⊢ (𝑚 ∈ 𝑍 → (𝐹‘𝑚) = (𝐺‘𝑚)) |
| 14 | 13 | adantl 481 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) = (𝐺‘𝑚)) |
| 15 | 1, 2, 8, 9, 14 | climeq 15471 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 ℤcz 12465 ℤ≥cuz 12729 ⇝ cli 15388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-neg 11344 df-z 12466 df-uz 12730 df-clim 15392 |
| This theorem is referenced by: climmpt2 15477 climrecl 15487 climge0 15488 caurcvg2 15582 caucvg 15583 climfsum 15724 dstfrvclim1 34486 divcnvg 45666 climmptf 45718 |
| Copyright terms: Public domain | W3C validator |