MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmpt Structured version   Visualization version   GIF version

Theorem climmpt 15475
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
climmpt.2 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
Assertion
Ref Expression
climmpt ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climmpt
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 2clim.1 . 2 𝑍 = (ℤ𝑀)
2 simpr 484 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
3 climmpt.2 . . . 4 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
4 fvex 6835 . . . . . 6 (ℤ𝑀) ∈ V
51, 4eqeltri 2827 . . . . 5 𝑍 ∈ V
65mptex 7157 . . . 4 (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V
73, 6eqeltri 2827 . . 3 𝐺 ∈ V
87a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐺 ∈ V)
9 simpl 482 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝑀 ∈ ℤ)
10 fveq2 6822 . . . . 5 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
11 fvex 6835 . . . . 5 (𝐹𝑚) ∈ V
1210, 3, 11fvmpt 6929 . . . 4 (𝑚𝑍 → (𝐺𝑚) = (𝐹𝑚))
1312eqcomd 2737 . . 3 (𝑚𝑍 → (𝐹𝑚) = (𝐺𝑚))
1413adantl 481 . 2 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
151, 2, 8, 9, 14climeq 15471 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5091  cmpt 5172  cfv 6481  cz 12465  cuz 12729  cli 15388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-pre-lttri 11077  ax-pre-lttrn 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-neg 11344  df-z 12466  df-uz 12730  df-clim 15392
This theorem is referenced by:  climmpt2  15477  climrecl  15487  climge0  15488  caurcvg2  15582  caucvg  15583  climfsum  15724  dstfrvclim1  34486  divcnvg  45666  climmptf  45718
  Copyright terms: Public domain W3C validator