MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmpt Structured version   Visualization version   GIF version

Theorem climmpt 15537
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
climmpt.2 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
Assertion
Ref Expression
climmpt ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climmpt
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 2clim.1 . 2 𝑍 = (ℤ𝑀)
2 simpr 484 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
3 climmpt.2 . . . 4 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
4 fvex 6871 . . . . . 6 (ℤ𝑀) ∈ V
51, 4eqeltri 2824 . . . . 5 𝑍 ∈ V
65mptex 7197 . . . 4 (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V
73, 6eqeltri 2824 . . 3 𝐺 ∈ V
87a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐺 ∈ V)
9 simpl 482 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝑀 ∈ ℤ)
10 fveq2 6858 . . . . 5 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
11 fvex 6871 . . . . 5 (𝐹𝑚) ∈ V
1210, 3, 11fvmpt 6968 . . . 4 (𝑚𝑍 → (𝐺𝑚) = (𝐹𝑚))
1312eqcomd 2735 . . 3 (𝑚𝑍 → (𝐹𝑚) = (𝐺𝑚))
1413adantl 481 . 2 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
151, 2, 8, 9, 14climeq 15533 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107  cmpt 5188  cfv 6511  cz 12529  cuz 12793  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794  df-clim 15454
This theorem is referenced by:  climmpt2  15539  climrecl  15549  climge0  15550  caurcvg2  15644  caucvg  15645  climfsum  15786  dstfrvclim1  34469  divcnvg  45625  climmptf  45679
  Copyright terms: Public domain W3C validator