| Step | Hyp | Ref
| Expression |
| 1 | | climdm 15590 |
. . . . 5
⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) |
| 2 | 1 | biimpi 216 |
. . . 4
⊢ (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
| 3 | 2 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
| 4 | 3, 1 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝
) |
| 5 | | climfveqf.z |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 6 | | climfveqf.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 7 | | climfveqf.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| 8 | | climfveqf.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 9 | | climfveqf.p |
. . . . . . . . . . 11
⊢
Ⅎ𝑘𝜑 |
| 10 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑗 |
| 11 | 10 | nfel1 2922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑗 ∈ 𝑍 |
| 12 | 9, 11 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 13 | | climfveqf.n |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐹 |
| 14 | 13, 10 | nffv 6916 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐹‘𝑗) |
| 15 | | climfveqf.o |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐺 |
| 16 | 15, 10 | nffv 6916 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐺‘𝑗) |
| 17 | 14, 16 | nfeq 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
| 18 | 12, 17 | nfim 1896 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
| 19 | | eleq1w 2824 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) |
| 20 | 19 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 21 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
| 22 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) |
| 23 | 21, 22 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
| 24 | 20, 23 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
| 25 | | climfveqf.e |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 26 | 18, 24, 25 | chvarfv 2240 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
| 27 | 5, 6, 7, 8, 26 | climeldmeq 45680 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
| 28 | 27 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝
)) |
| 29 | 4, 28 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝
) |
| 30 | | climdm 15590 |
. . . . 5
⊢ (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺)) |
| 31 | 29, 30 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺)) |
| 32 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ 𝑊) |
| 33 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ 𝑉) |
| 34 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈
ℤ) |
| 35 | 26 | eqcomd 2743 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) = (𝐹‘𝑗)) |
| 36 | 35 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) = (𝐹‘𝑗)) |
| 37 | 5, 32, 33, 34, 36 | climeq 15603 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺))) |
| 38 | 31, 37 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺)) |
| 39 | | climuni 15588 |
. . 3
⊢ ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
| 40 | 3, 38, 39 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝
‘𝐹) = ( ⇝
‘𝐺)) |
| 41 | | ndmfv 6941 |
. . . 4
⊢ (¬
𝐹 ∈ dom ⇝ →
( ⇝ ‘𝐹) =
∅) |
| 42 | 41 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝
‘𝐹) =
∅) |
| 43 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝
) |
| 44 | 27 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝
)) |
| 45 | 43, 44 | mtbid 324 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝
) |
| 46 | | ndmfv 6941 |
. . . 4
⊢ (¬
𝐺 ∈ dom ⇝ →
( ⇝ ‘𝐺) =
∅) |
| 47 | 45, 46 | syl 17 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝
‘𝐺) =
∅) |
| 48 | 42, 47 | eqtr4d 2780 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝
‘𝐹) = ( ⇝
‘𝐺)) |
| 49 | 40, 48 | pm2.61dan 813 |
1
⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |