Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqf Structured version   Visualization version   GIF version

Theorem climfveqf 45652
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climfveqf.p 𝑘𝜑
climfveqf.n 𝑘𝐹
climfveqf.o 𝑘𝐺
climfveqf.z 𝑍 = (ℤ𝑀)
climfveqf.f (𝜑𝐹𝑉)
climfveqf.g (𝜑𝐺𝑊)
climfveqf.m (𝜑𝑀 ∈ ℤ)
climfveqf.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climfveqf (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climfveqf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climdm 15572 . . . . 5 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
21biimpi 216 . . . 4 (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹))
32adantl 481 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
43, 1sylibr 234 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
5 climfveqf.z . . . . . . . 8 𝑍 = (ℤ𝑀)
6 climfveqf.f . . . . . . . 8 (𝜑𝐹𝑉)
7 climfveqf.g . . . . . . . 8 (𝜑𝐺𝑊)
8 climfveqf.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 climfveqf.p . . . . . . . . . . 11 𝑘𝜑
10 nfcv 2897 . . . . . . . . . . . 12 𝑘𝑗
1110nfel1 2914 . . . . . . . . . . 11 𝑘 𝑗𝑍
129, 11nfan 1898 . . . . . . . . . 10 𝑘(𝜑𝑗𝑍)
13 climfveqf.n . . . . . . . . . . . 12 𝑘𝐹
1413, 10nffv 6896 . . . . . . . . . . 11 𝑘(𝐹𝑗)
15 climfveqf.o . . . . . . . . . . . 12 𝑘𝐺
1615, 10nffv 6896 . . . . . . . . . . 11 𝑘(𝐺𝑗)
1714, 16nfeq 2911 . . . . . . . . . 10 𝑘(𝐹𝑗) = (𝐺𝑗)
1812, 17nfim 1895 . . . . . . . . 9 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
19 eleq1w 2816 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2019anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
21 fveq2 6886 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
22 fveq2 6886 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2321, 22eqeq12d 2750 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2420, 23imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))))
25 climfveqf.e . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
2618, 24, 25chvarfv 2239 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
275, 6, 7, 8, 26climeldmeq 45637 . . . . . . 7 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
2827adantr 480 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
294, 28mpbid 232 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
30 climdm 15572 . . . . 5 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
3129, 30sylib 218 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
327adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
336adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹𝑉)
348adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
3526eqcomd 2740 . . . . . 6 ((𝜑𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
3635adantlr 715 . . . . 5 (((𝜑𝐹 ∈ dom ⇝ ) ∧ 𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
375, 32, 33, 34, 36climeq 15585 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
3831, 37mpbid 232 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
39 climuni 15570 . . 3 ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
403, 38, 39syl2anc 584 . 2 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
41 ndmfv 6921 . . . 4 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅)
4241adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅)
43 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
4427adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
4543, 44mtbid 324 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ )
46 ndmfv 6921 . . . 4 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅)
4745, 46syl 17 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅)
4842, 47eqtr4d 2772 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
4940, 48pm2.61dan 812 1 (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wnf 1782  wcel 2107  wnfc 2882  c0 4313   class class class wbr 5123  dom cdm 5665  cfv 6541  cz 12596  cuz 12860  cli 15502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-seq 14025  df-exp 14085  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506
This theorem is referenced by:  climfveqmpt2  45665
  Copyright terms: Public domain W3C validator