Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqf Structured version   Visualization version   GIF version

Theorem climfveqf 45131
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climfveqf.p 𝑘𝜑
climfveqf.n 𝑘𝐹
climfveqf.o 𝑘𝐺
climfveqf.z 𝑍 = (ℤ𝑀)
climfveqf.f (𝜑𝐹𝑉)
climfveqf.g (𝜑𝐺𝑊)
climfveqf.m (𝜑𝑀 ∈ ℤ)
climfveqf.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climfveqf (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climfveqf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climdm 15530 . . . . 5 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
21biimpi 215 . . . 4 (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹))
32adantl 480 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
43, 1sylibr 233 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
5 climfveqf.z . . . . . . . 8 𝑍 = (ℤ𝑀)
6 climfveqf.f . . . . . . . 8 (𝜑𝐹𝑉)
7 climfveqf.g . . . . . . . 8 (𝜑𝐺𝑊)
8 climfveqf.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 climfveqf.p . . . . . . . . . . 11 𝑘𝜑
10 nfcv 2892 . . . . . . . . . . . 12 𝑘𝑗
1110nfel1 2909 . . . . . . . . . . 11 𝑘 𝑗𝑍
129, 11nfan 1894 . . . . . . . . . 10 𝑘(𝜑𝑗𝑍)
13 climfveqf.n . . . . . . . . . . . 12 𝑘𝐹
1413, 10nffv 6902 . . . . . . . . . . 11 𝑘(𝐹𝑗)
15 climfveqf.o . . . . . . . . . . . 12 𝑘𝐺
1615, 10nffv 6902 . . . . . . . . . . 11 𝑘(𝐺𝑗)
1714, 16nfeq 2906 . . . . . . . . . 10 𝑘(𝐹𝑗) = (𝐺𝑗)
1812, 17nfim 1891 . . . . . . . . 9 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
19 eleq1w 2808 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2019anbi2d 628 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
21 fveq2 6892 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
22 fveq2 6892 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2321, 22eqeq12d 2741 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2420, 23imbi12d 343 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))))
25 climfveqf.e . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
2618, 24, 25chvarfv 2228 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
275, 6, 7, 8, 26climeldmeq 45116 . . . . . . 7 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
2827adantr 479 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
294, 28mpbid 231 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
30 climdm 15530 . . . . 5 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
3129, 30sylib 217 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
327adantr 479 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
336adantr 479 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹𝑉)
348adantr 479 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
3526eqcomd 2731 . . . . . 6 ((𝜑𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
3635adantlr 713 . . . . 5 (((𝜑𝐹 ∈ dom ⇝ ) ∧ 𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
375, 32, 33, 34, 36climeq 15543 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
3831, 37mpbid 231 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
39 climuni 15528 . . 3 ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
403, 38, 39syl2anc 582 . 2 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
41 ndmfv 6927 . . . 4 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅)
4241adantl 480 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅)
43 simpr 483 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
4427adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
4543, 44mtbid 323 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ )
46 ndmfv 6927 . . . 4 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅)
4745, 46syl 17 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅)
4842, 47eqtr4d 2768 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
4940, 48pm2.61dan 811 1 (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wnf 1777  wcel 2098  wnfc 2875  c0 4318   class class class wbr 5143  dom cdm 5672  cfv 6543  cz 12588  cuz 12852  cli 15460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464
This theorem is referenced by:  climfveqmpt2  45144
  Copyright terms: Public domain W3C validator