Step | Hyp | Ref
| Expression |
1 | | climdm 15191 |
. . . . 5
⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) |
2 | 1 | biimpi 215 |
. . . 4
⊢ (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
3 | 2 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | 3, 1 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝
) |
5 | | climfveqf.z |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
6 | | climfveqf.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
7 | | climfveqf.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
8 | | climfveqf.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | | climfveqf.p |
. . . . . . . . . . 11
⊢
Ⅎ𝑘𝜑 |
10 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑗 |
11 | 10 | nfel1 2922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑗 ∈ 𝑍 |
12 | 9, 11 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
13 | | climfveqf.n |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐹 |
14 | 13, 10 | nffv 6766 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐹‘𝑗) |
15 | | climfveqf.o |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐺 |
16 | 15, 10 | nffv 6766 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐺‘𝑗) |
17 | 14, 16 | nfeq 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
18 | 12, 17 | nfim 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
19 | | eleq1w 2821 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) |
20 | 19 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
21 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
22 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) |
23 | 21, 22 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
24 | 20, 23 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
25 | | climfveqf.e |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
26 | 18, 24, 25 | chvarfv 2236 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
27 | 5, 6, 7, 8, 26 | climeldmeq 43096 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
28 | 27 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝
)) |
29 | 4, 28 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝
) |
30 | | climdm 15191 |
. . . . 5
⊢ (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺)) |
31 | 29, 30 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺)) |
32 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ 𝑊) |
33 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ 𝑉) |
34 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈
ℤ) |
35 | 26 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) = (𝐹‘𝑗)) |
36 | 35 | adantlr 711 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) = (𝐹‘𝑗)) |
37 | 5, 32, 33, 34, 36 | climeq 15204 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺))) |
38 | 31, 37 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺)) |
39 | | climuni 15189 |
. . 3
⊢ ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
40 | 3, 38, 39 | syl2anc 583 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝
‘𝐹) = ( ⇝
‘𝐺)) |
41 | | ndmfv 6786 |
. . . 4
⊢ (¬
𝐹 ∈ dom ⇝ →
( ⇝ ‘𝐹) =
∅) |
42 | 41 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝
‘𝐹) =
∅) |
43 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝
) |
44 | 27 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝
)) |
45 | 43, 44 | mtbid 323 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝
) |
46 | | ndmfv 6786 |
. . . 4
⊢ (¬
𝐺 ∈ dom ⇝ →
( ⇝ ‘𝐺) =
∅) |
47 | 45, 46 | syl 17 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝
‘𝐺) =
∅) |
48 | 42, 47 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝
‘𝐹) = ( ⇝
‘𝐺)) |
49 | 40, 48 | pm2.61dan 809 |
1
⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |