Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqf Structured version   Visualization version   GIF version

Theorem climfveqf 45059
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climfveqf.p 𝑘𝜑
climfveqf.n 𝑘𝐹
climfveqf.o 𝑘𝐺
climfveqf.z 𝑍 = (ℤ𝑀)
climfveqf.f (𝜑𝐹𝑉)
climfveqf.g (𝜑𝐺𝑊)
climfveqf.m (𝜑𝑀 ∈ ℤ)
climfveqf.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climfveqf (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climfveqf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climdm 15525 . . . . 5 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
21biimpi 215 . . . 4 (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹))
32adantl 481 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
43, 1sylibr 233 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
5 climfveqf.z . . . . . . . 8 𝑍 = (ℤ𝑀)
6 climfveqf.f . . . . . . . 8 (𝜑𝐹𝑉)
7 climfveqf.g . . . . . . . 8 (𝜑𝐺𝑊)
8 climfveqf.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 climfveqf.p . . . . . . . . . . 11 𝑘𝜑
10 nfcv 2899 . . . . . . . . . . . 12 𝑘𝑗
1110nfel1 2915 . . . . . . . . . . 11 𝑘 𝑗𝑍
129, 11nfan 1895 . . . . . . . . . 10 𝑘(𝜑𝑗𝑍)
13 climfveqf.n . . . . . . . . . . . 12 𝑘𝐹
1413, 10nffv 6902 . . . . . . . . . . 11 𝑘(𝐹𝑗)
15 climfveqf.o . . . . . . . . . . . 12 𝑘𝐺
1615, 10nffv 6902 . . . . . . . . . . 11 𝑘(𝐺𝑗)
1714, 16nfeq 2912 . . . . . . . . . 10 𝑘(𝐹𝑗) = (𝐺𝑗)
1812, 17nfim 1892 . . . . . . . . 9 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
19 eleq1w 2812 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2019anbi2d 629 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
21 fveq2 6892 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
22 fveq2 6892 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2321, 22eqeq12d 2744 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2420, 23imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))))
25 climfveqf.e . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
2618, 24, 25chvarfv 2229 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
275, 6, 7, 8, 26climeldmeq 45044 . . . . . . 7 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
2827adantr 480 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
294, 28mpbid 231 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
30 climdm 15525 . . . . 5 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
3129, 30sylib 217 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
327adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
336adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹𝑉)
348adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
3526eqcomd 2734 . . . . . 6 ((𝜑𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
3635adantlr 714 . . . . 5 (((𝜑𝐹 ∈ dom ⇝ ) ∧ 𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
375, 32, 33, 34, 36climeq 15538 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
3831, 37mpbid 231 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
39 climuni 15523 . . 3 ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
403, 38, 39syl2anc 583 . 2 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
41 ndmfv 6927 . . . 4 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅)
4241adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅)
43 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
4427adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
4543, 44mtbid 324 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ )
46 ndmfv 6927 . . . 4 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅)
4745, 46syl 17 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅)
4842, 47eqtr4d 2771 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
4940, 48pm2.61dan 812 1 (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wnf 1778  wcel 2099  wnfc 2879  c0 4319   class class class wbr 5143  dom cdm 5673  cfv 6543  cz 12583  cuz 12847  cli 15455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459
This theorem is referenced by:  climfveqmpt2  45072
  Copyright terms: Public domain W3C validator