Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqf Structured version   Visualization version   GIF version

Theorem climfveqf 42309
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climfveqf.p 𝑘𝜑
climfveqf.n 𝑘𝐹
climfveqf.o 𝑘𝐺
climfveqf.z 𝑍 = (ℤ𝑀)
climfveqf.f (𝜑𝐹𝑉)
climfveqf.g (𝜑𝐺𝑊)
climfveqf.m (𝜑𝑀 ∈ ℤ)
climfveqf.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climfveqf (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climfveqf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climdm 14906 . . . . 5 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
21biimpi 219 . . . 4 (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹))
32adantl 485 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
43, 1sylibr 237 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
5 climfveqf.z . . . . . . . 8 𝑍 = (ℤ𝑀)
6 climfveqf.f . . . . . . . 8 (𝜑𝐹𝑉)
7 climfveqf.g . . . . . . . 8 (𝜑𝐺𝑊)
8 climfveqf.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 climfveqf.p . . . . . . . . . . 11 𝑘𝜑
10 nfcv 2958 . . . . . . . . . . . 12 𝑘𝑗
1110nfel1 2974 . . . . . . . . . . 11 𝑘 𝑗𝑍
129, 11nfan 1900 . . . . . . . . . 10 𝑘(𝜑𝑗𝑍)
13 climfveqf.n . . . . . . . . . . . 12 𝑘𝐹
1413, 10nffv 6659 . . . . . . . . . . 11 𝑘(𝐹𝑗)
15 climfveqf.o . . . . . . . . . . . 12 𝑘𝐺
1615, 10nffv 6659 . . . . . . . . . . 11 𝑘(𝐺𝑗)
1714, 16nfeq 2971 . . . . . . . . . 10 𝑘(𝐹𝑗) = (𝐺𝑗)
1812, 17nfim 1897 . . . . . . . . 9 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
19 eleq1w 2875 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2019anbi2d 631 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
21 fveq2 6649 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
22 fveq2 6649 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2321, 22eqeq12d 2817 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2420, 23imbi12d 348 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))))
25 climfveqf.e . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
2618, 24, 25chvarfv 2241 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
275, 6, 7, 8, 26climeldmeq 42294 . . . . . . 7 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
2827adantr 484 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
294, 28mpbid 235 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
30 climdm 14906 . . . . 5 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
3129, 30sylib 221 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
327adantr 484 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
336adantr 484 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹𝑉)
348adantr 484 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
3526eqcomd 2807 . . . . . 6 ((𝜑𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
3635adantlr 714 . . . . 5 (((𝜑𝐹 ∈ dom ⇝ ) ∧ 𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
375, 32, 33, 34, 36climeq 14919 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
3831, 37mpbid 235 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
39 climuni 14904 . . 3 ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
403, 38, 39syl2anc 587 . 2 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
41 ndmfv 6679 . . . 4 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅)
4241adantl 485 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅)
43 simpr 488 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
4427adantr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
4543, 44mtbid 327 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ )
46 ndmfv 6679 . . . 4 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅)
4745, 46syl 17 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅)
4842, 47eqtr4d 2839 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
4940, 48pm2.61dan 812 1 (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  wcel 2112  wnfc 2939  c0 4246   class class class wbr 5033  dom cdm 5523  cfv 6328  cz 11973  cuz 12235  cli 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840
This theorem is referenced by:  climfveqmpt2  42322
  Copyright terms: Public domain W3C validator