Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqf Structured version   Visualization version   GIF version

Theorem climfveqf 45695
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climfveqf.p 𝑘𝜑
climfveqf.n 𝑘𝐹
climfveqf.o 𝑘𝐺
climfveqf.z 𝑍 = (ℤ𝑀)
climfveqf.f (𝜑𝐹𝑉)
climfveqf.g (𝜑𝐺𝑊)
climfveqf.m (𝜑𝑀 ∈ ℤ)
climfveqf.e ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climfveqf (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climfveqf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climdm 15590 . . . . 5 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
21biimpi 216 . . . 4 (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹))
32adantl 481 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
43, 1sylibr 234 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
5 climfveqf.z . . . . . . . 8 𝑍 = (ℤ𝑀)
6 climfveqf.f . . . . . . . 8 (𝜑𝐹𝑉)
7 climfveqf.g . . . . . . . 8 (𝜑𝐺𝑊)
8 climfveqf.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 climfveqf.p . . . . . . . . . . 11 𝑘𝜑
10 nfcv 2905 . . . . . . . . . . . 12 𝑘𝑗
1110nfel1 2922 . . . . . . . . . . 11 𝑘 𝑗𝑍
129, 11nfan 1899 . . . . . . . . . 10 𝑘(𝜑𝑗𝑍)
13 climfveqf.n . . . . . . . . . . . 12 𝑘𝐹
1413, 10nffv 6916 . . . . . . . . . . 11 𝑘(𝐹𝑗)
15 climfveqf.o . . . . . . . . . . . 12 𝑘𝐺
1615, 10nffv 6916 . . . . . . . . . . 11 𝑘(𝐺𝑗)
1714, 16nfeq 2919 . . . . . . . . . 10 𝑘(𝐹𝑗) = (𝐺𝑗)
1812, 17nfim 1896 . . . . . . . . 9 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
19 eleq1w 2824 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2019anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
21 fveq2 6906 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
22 fveq2 6906 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2321, 22eqeq12d 2753 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑗) = (𝐺𝑗)))
2420, 23imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))))
25 climfveqf.e . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
2618, 24, 25chvarfv 2240 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺𝑗))
275, 6, 7, 8, 26climeldmeq 45680 . . . . . . 7 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
2827adantr 480 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
294, 28mpbid 232 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
30 climdm 15590 . . . . 5 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
3129, 30sylib 218 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
327adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
336adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹𝑉)
348adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
3526eqcomd 2743 . . . . . 6 ((𝜑𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
3635adantlr 715 . . . . 5 (((𝜑𝐹 ∈ dom ⇝ ) ∧ 𝑗𝑍) → (𝐺𝑗) = (𝐹𝑗))
375, 32, 33, 34, 36climeq 15603 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
3831, 37mpbid 232 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
39 climuni 15588 . . 3 ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
403, 38, 39syl2anc 584 . 2 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
41 ndmfv 6941 . . . 4 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅)
4241adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅)
43 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
4427adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
4543, 44mtbid 324 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ )
46 ndmfv 6941 . . . 4 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅)
4745, 46syl 17 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅)
4842, 47eqtr4d 2780 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
4940, 48pm2.61dan 813 1 (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  c0 4333   class class class wbr 5143  dom cdm 5685  cfv 6561  cz 12613  cuz 12878  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524
This theorem is referenced by:  climfveqmpt2  45708
  Copyright terms: Public domain W3C validator