| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofu1a | Structured version Visualization version GIF version | ||
| Description: Value of the object part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofu1a.b | ⊢ 𝐵 = (Base‘𝐶) |
| cofu1a.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| cofu1a.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| cofu1a.m | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) |
| cofu1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| cofu1a | ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = (𝑀‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofu1a.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | cofu1a.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 3 | df-br 5096 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 5 | cofu1a.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 6 | df-br 5096 | . . . 4 ⊢ (𝐾(𝐷 Func 𝐸)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐷 Func 𝐸)) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐷 Func 𝐸)) |
| 8 | cofu1a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 1, 4, 7, 8 | cofu1 17809 | . 2 ⊢ (𝜑 → ((1st ‘(〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉))‘𝑋) = ((1st ‘〈𝐾, 𝐿〉)‘((1st ‘〈𝐹, 𝐺〉)‘𝑋))) |
| 10 | cofu1a.m | . . . . 5 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) | |
| 11 | 10 | fveq2d 6830 | . . . 4 ⊢ (𝜑 → (1st ‘(〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) = (1st ‘〈𝑀, 𝑁〉)) |
| 12 | 4, 7 | cofucl 17813 | . . . . . . 7 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) ∈ (𝐶 Func 𝐸)) |
| 13 | 10, 12 | eqeltrrd 2829 | . . . . . 6 ⊢ (𝜑 → 〈𝑀, 𝑁〉 ∈ (𝐶 Func 𝐸)) |
| 14 | df-br 5096 | . . . . . 6 ⊢ (𝑀(𝐶 Func 𝐸)𝑁 ↔ 〈𝑀, 𝑁〉 ∈ (𝐶 Func 𝐸)) | |
| 15 | 13, 14 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝑀(𝐶 Func 𝐸)𝑁) |
| 16 | 15 | func1st 49063 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝑀, 𝑁〉) = 𝑀) |
| 17 | 11, 16 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (1st ‘(〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) = 𝑀) |
| 18 | 17 | fveq1d 6828 | . 2 ⊢ (𝜑 → ((1st ‘(〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉))‘𝑋) = (𝑀‘𝑋)) |
| 19 | 5 | func1st 49063 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐾, 𝐿〉) = 𝐾) |
| 20 | 2 | func1st 49063 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 21 | 20 | fveq1d 6828 | . . 3 ⊢ (𝜑 → ((1st ‘〈𝐹, 𝐺〉)‘𝑋) = (𝐹‘𝑋)) |
| 22 | 19, 21 | fveq12d 6833 | . 2 ⊢ (𝜑 → ((1st ‘〈𝐾, 𝐿〉)‘((1st ‘〈𝐹, 𝐺〉)‘𝑋)) = (𝐾‘(𝐹‘𝑋))) |
| 23 | 9, 18, 22 | 3eqtr3rd 2773 | 1 ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = (𝑀‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 Basecbs 17138 Func cfunc 17779 ∘func ccofu 17781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-cat 17592 df-cid 17593 df-func 17783 df-cofu 17785 |
| This theorem is referenced by: uptrlem1 49196 uptrlem3 49198 uptr2 49207 |
| Copyright terms: Public domain | W3C validator |